Modulation of biochemical and physiological parameters in Hordeum vulgare L. seedlings under the influence of benzyl-butyl phthalate

Author:

Kumari Arpna,Kaur Rajinder

Abstract

Background Phthalates are man-made chemical compounds with numerous applications especially known for their use as plasticizers. They have weak bonding to the polymeric matrix or products in which they are used. Owing to this reason, they are readily released into the environment which makes them ubiquitous. The agricultural soils are also reported to be polluted with phthalates up to a considerable extent which causes adverse effects on flora and fauna. A few studies have been conducted on phthalate-induced phytotoxicity, which has revealed that phthalates affect the quality and yield of edible plants. In the last decades, some crops were analyzed for phthalate-induced adversities; among them, barley was the least explored. Methods The present study has investigated the impact of benzyl-butyl phthalate (BBP) on barley (Hordeum vulgare L.) seedlings to address the biochemical, physiological consequences, and toxicological implications. After the exogenous exposure of BBP (viz. 0, 25, 50, 100, 200, 400, 800, 1,600 mg/L) for 7 days, barley seedlings were analyzed for different indices. Results The exposure of BBP mediated a significant (p ≤ 0.05, 0.01) overall elevation in the contents of pigment, proline, soluble protein, carbohydrate, hydrogen peroxide (H2O2), and malondialdehyde (MDA) in shoots and roots of barley seedlings. The activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were also stimulated significantly in shoots and roots of seedlings against BBP stress except for SOD activity which declined in the roots. The polyphenols (non-enzymatic antioxidants) content was also altered in all the treated concentrations as compared to the control. Furthermore, BBP caused stomatal abnormalities, induced cytotoxicity, and loss of plasma membrane integrity. Conclusions BBP disturbed the normal physiology of barley which could also affect the yield of the crop under field conditions.

Funder

University Grants Commission, New Delhi

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference89 articles.

1. Catalase in vitro;Aebi;Methods in Enzymology, Academic Press,1984

2. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat;Alexieva;Plant, Cell & Environment,2001

3. Association of urinary concentrations of phthalate metabolites with cardiometabolic risk factors and obesity in children and adolescents;Amin;Chemosphere,2018

4. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-a review;Anjum;Environmental and Experimental Botany,2012

5. Reactive oxygen species: metabolism, oxidative stress, and signal transduction;Apel;Annual Review of Plant Biology,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3