Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean

Author:

Pilczynska Joanna12,Cocito Silvia3,Boavida Joana45,Serrão Ester A.4,Assis Jorge4,Fragkopoulou Eliza4,Queiroga Henrique1

Affiliation:

1. Departamento de Biologia and CESAM—Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal

2. Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy

3. Italian Agency for New Technologies, Energy and Sustainable Economic Development—ENEA, Marine Environment Research Centre, La Spezia, Italy

4. CCMAR—Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal

5. Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France

Abstract

Background In the ocean, the variability of environmental conditions found along depth gradients exposes populations to contrasting levels of perturbation, which can be reflected in the overall patterns of species genetic diversity. At shallow sites, resource availability may structure large, persistent and well-connected populations with higher levels of diversity. In contrast, the more extreme conditions, such as thermal stress during heat waves, can lead to population bottlenecks and genetic erosion, inverting the natural expectation. Here we examine how genetic diversity varies along depth for a long-lived, important ecosystem-structuring species, the red gorgonian, Paramuricea clavata. Methods We used five polymorphic microsatellite markers to infer differences in genetic diversity and differentiation, and to detect bottleneck signs between shallow and deeper populations across the Atlantic Ocean and the Mediterranean Sea. We further explored the potential relationship between depth and environmental gradients (temperature, ocean currents, productivity and slope) on the observed patterns of diversity by means of generalized linear mixed models. Results An overall pattern of higher genetic diversity was found in the deeper sites of the Atlantic Ocean and the Mediterranean Sea. This pattern was largely explained by bottom temperatures, with a linear pattern of decreasing genetic diversity with increasing thermal stress. Genetic differentiation patterns showed higher gene flow within sites (i.e., shallow vs. deeper populations) than between sites. Recent genetic bottlenecks were found in two populations of shallow depths. Discussion Our results highlight the role of deep refugial populations safeguarding higher and unique genetic diversity for marine structuring species. Theoretical regression modelling demonstrated how thermal stress alone may reduce population sizes and diversity levels of shallow water populations. In fact, the examination of time series on a daily basis showed the upper water masses repeatedly reaching lethal temperatures for P. clavata. Differentiation patterns showed that the deep richer populations are isolated. Gene flow was also inferred across different depths; however, not in sufficient levels to offset the detrimental effects of surface environmental conditions on genetic diversity. The identification of deep isolated areas with high conservation value for the red gorgonian represents an important step in the face of ongoing and future climate changes.

Funder

CESAM

FCT/MCTES through national funds

FEDER

Pew Marine Fellowship (USA), the National Geographic Channel

National Geographic/Waitt

InAqua Conservation Fund

European Regional Development Fund

Foundation for Science and Technology (FCT) of Portugal through postdoctoral fellowship

DiverseShores—Testing associations

Erasmus Mundus coordinated by Ghent University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3