Epifaunal invertebrate assemblages associated with branching Pocilloporids in Moorea, French Polynesia

Author:

Pisapia Chiara12,Stella Jessica3,Silbiger Nyssa J.2ORCID,Carpenter Robert2

Affiliation:

1. Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong

2. Department of Biology, California State University, Northridge, CA, USA

3. Great Barrier Reef Marine Park Authority, Townsville, QLD, Australia

Abstract

Reef-building corals can harbour high abundances of diverse invertebrate epifauna. Coral characteristics and environmental conditions are important drivers of community structure of coral-associated invertebrates; however, our current understanding of drivers of epifaunal distributions is still unclear. This study tests the relative importance of the physical environment (current flow speed) and host quality (e.g., colony height, surface area, distance between branches, penetration depth among branches, and background partial mortality) in structuring epifaunal communities living within branching Pocillopora colonies on a back reef in Moorea, French Polynesia. A total of 470 individuals belonging to four phyla, 16 families and 39 genera were extracted from 36 Pocillopora spp. colonies. Decapods were the most abundant epifaunal organisms (accounting for 84% of individuals) found living in Pocillopora spp. While coral host characteristics and flow regime are very important, these parameters were not correlated with epifaunal assemblages at the time of the study. Epifaunal assemblages associated with Pocillopora spp. were consistent and minimally affected by differences in host characteristics and flow regime. The consistency in abundance and taxon richness among colonies (regardless of habitat characteristics) highlighted the importance of total habitat availability. With escalating effects of climate change and other localized disturbances, it is critical to preserve branching corals to support epifaunal communities.

Funder

Moorea Coral Reef (MCR) Long Term Ecological Research

National Science Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3