Macrostylis metallicola spec. nov.—an isopod with geographically clustered genetic variability from a polymetallic-nodule area in the Clarion-Clipperton Fracture Zone

Author:

Riehl Torben123,De Smet Bart4ORCID

Affiliation:

1. Department of Marine Zoology, Section Crustacea, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany

2. Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany

3. Centre for Natural History, Zoological Museum, Universität Hamburg, Hamburg, Germany

4. Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium

Abstract

Background The Clarion-Clipperton Fracture Zone (CCFZ) in the Northeast Central Pacific Ocean is a region of heightened scientific and public interest because of its wealth in manganese nodules. Due to a poor ecological understanding at the abyssal seafloor and limited knowledge of the organisms inhabiting this area, huge efforts in alpha taxonomy are required. To predict and manage potential hazards associated with future mining, taxonomy is an essential first step to grasp fundamental ecosystem traits, such as biogeographic patterns, connectivity, and the potential for post-impact recolonization. Amongst samples from the Global Sea Mineral Resources NV exploration area (EA) in the CCFZ an undescribed species of the isopod crustacean family Macrostylidae was discovered. Previously, it has been reported from two other nearby regions, the Institut Français de Recherche pour l’Exploitation de la Mer and BGR EAs. There it was one of the more widely distributed and abundant species of the benthic macrofauna and exhibited geographically structured populations. It nevertheless remained taxonomically undescribed so far. Methods The new species is described by means of integrative taxonomy. Morphologically, macro photography, confocal microscopy, scanning electron microscopy and light microscopy were used to describe the species and to get first insights on its phylogenetic origin. Additionally, mitochondrial DNA markers were used to test the morphological allocation of the two dimorphic sexes and juvenile stages, to analyze geographic patterns of genetic differentiation, and to study intra-and inter-species relationships, also in light of previously published population genetics on this species. Results The new species, Macrostylis metallicola spec. nov., is a typical representative of Macrostylidae as recognizable from the fossosoma, prognathous cephalothorax, and styliform uropods. It can be morphologically distinguished from congeners by a combination of character states which include the autapomorphic shape of the first pleopod of the copulatory male. A sexual dimorphism, as expressed by a peculiar sequence of article length-width ratios of the male antennula, indicates a relationship with M. marionae Kniesz, Brandt & Riehl (2018) and M. longipes Hansen (1916) amongst other species sharing this dimorphism. Mitochondrial genetic markers point in a similar direction. M. metallicola appears to be amongst the more common and widely distributed components of the benthic macrofauna in this region which may suggest a resilience of this species to future mining activities because of its apparent potential for recolonization of impacted sites from adjacent areas of particular environmental interest. The genetic data, however, show geographic clustering of its genetic variability, pointing towards a limited potential for dispersal. Local extinction of populations could potentially not be compensated quickly and would mean a loss of genetic diversity of this species.

Funder

Global Sea Mineral Resources N.V

Ghent University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference116 articles.

1. Environmental risk assessment of anthropogenic activity in the deep-sea;Ahnert;Journal of Aquatic Ecosystem Stress and Recovery,2000

2. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone;Amon;Scientific Reports,2016

3. GenBank;Benson;Nucleic Acids Research,2008

4. New Crustacea Isopoda from the Kurile–Kamchatka Trench area;Birstein,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3