Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe

Author:

Cao Chan12,Shuai Ling-Ying1,Xin Xiao-Ping3,Liu Zhi-Tao4,Song Yan-Ling1,Zeng Zhi-Gao1

Affiliation:

1. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China

4. College of Life Science and Technology, Harbin Normal University, Harbin, China

Abstract

Small mammals play important roles in many ecosystems, and understanding their response to disturbances such as cattle grazing is fundamental for developing sustainable land use strategies. However, how small mammals respond to cattle grazing remains controversial. A potential cause is that most of previous studies adopt rather simple experimental designs based solely on the presence/absence of grazing, and are thus unable to detect any complex relationships between diversity and grazing intensity. In this study, we conducted manipulated experiments in the Hulunber meadow steppe to survey small mammal community structures under four levels of grazing intensities. We found dramatic changes in species composition in native small mammal communities when grazing intensity reached intermediate levels (0.46 animal unit/ha). As grazing intensity increased,Spermophilus dauricusgradually became the single dominant species. Species richness and diversity of small mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much higher than in intermediately and heavily grazed area. We did not detect a humped relationship between small mammal diversity and disturbance levels predicted by the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity of conducting manipulated experiments under multiple grazing intensities.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3