The physiological consequences of varied heat exposure events in adultMyzus persicae: a single prolonged exposure compared to repeated shorter exposures

Author:

Ghaedi Behnaz1,Andrew Nigel R.1

Affiliation:

1. Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia

Abstract

The study of environmental stress tolerance in aphids has primarily been at low temperatures. In these cases, and in the rare cases of high temperature tolerance assessments, all exposures had been during a single stress event. In the present study, we examined the physiological consequences of repeated high temperature exposure with recovery periods between these stress events inMyzus persicae. We subjected individuals to either a single prolonged three hour heating event, or three one hour heating events with a recovery time of 24 h between bouts. Aphids exposed to repeated bouts of high temperatures had more glucose and higher expression of proteins and osmolyte compounds, such as glycerol, compared to the prolonged exposure group. However, aphids exposed to the repeated high temperature treatment had reduced sources of energy such as trehalose and triglyceride compounds than the prolonged exposure group. Recovery time had more physiological costs (based on production of more protein and consumption of more trehalose and triglyceride) and benefits (based on production of more osmolytes) in repeated high temperature treatments. As aphids are known to respond differently to constant versus ‘natural’ fluctuating temperature regimes, conclusions drawn from constant temperature data sets may be problematic. We suggest future experiments assessing insect responses to thermal stress incorporate a repeated stress and recovery pattern into their methodologies.

Funder

UNE

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3