Limited influence of marine sediment lyophilization on prokaryotic community structure assessed via amplicon sequencing: an example from environmentally contrasted sediment layers in Toulon harbor (France)

Author:

Misson Benjamin1ORCID,Garnier Cédric1,Poulain Alexandre J.2ORCID

Affiliation:

1. Université de Toulon, Aix Marseille University, CNRS, IRD, MIO, Toulon, France

2. Department of Biology, University of Ottawa, Ottawa, ON, Canada

Abstract

Sediment lyophilization is a common process that allows for long-term conservation and sharing of marine sediments for multiple downstream analyses. Although it is often used for geochemical studies, the effects of lyophilization on prokaryotic taxonomic diversity assessment remained to be assessed. Here, we tested the effect of lyophilization on microbial diversity assessment using three sediment layers corresponding to various sediment ages and chemical contamination levels sampled from a marine Mediterranean harbor. Duplicate DNA samples were extracted from wet frozen or lyophilized sediments, and 16S rRNA gene amplicon sequence variants were analyzed. We detected changes in community structure over depth linked to both dominant and less abundant taxa whether sediments were lyophilized or not. Data from both wet frozen and lyophilized sediments led us to conclude that historical chemical contamination of the sediment of Toulon Bay did not appear to be the main environmental variable shaping prokaryotic community structure on the vertical dimension, but that sediment diagenesis was. We conclude that sediment lyophilization is compatible with marine biogeochemical and ecotoxicological studies but that caution should be used when discussing small variations among samples.

Funder

Institut Universitaire de Technology

NSERC

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3