Author:
Vereshchaka Alexander,Musaeva Eteri,Lunina Anastasiia
Abstract
Spatial distribution of zooplankton communities depends on numerous factors, especially temperature and salinity conditions (hydrological factor), sampled depth, chlorophyll concentration, and diel cycle. We analyzed and compared the impact of these factors on mesoplankton abundance, biodiversity, quantitative structure based on proportion of taxa and qualitative structure based on presence/absence of taxa in the Southern Ocean. Samples (43 stations, three vertical strata sampled at each station, 163 taxa identified) were collected with a Juday net along the SR02 transect in December 2009. Mesoplankton abundance in discrete vertical layers ranged from 0.2 to 13,743.6 ind. m−3, i.e., five orders of magnitude, maximal and minimal values were recorded in the upper mixed and in the deepest layer, respectively. Within the combined 300-m layer, abundances ranged from 16.0 to 1,455.0 ind. m−3, i.e., two orders of magnitude suggesting that integral samples provide little information about actual variations of mesoplankton abundances. A set of analyses showed that depth was the major driver of mesoplankton distribution (abundance, biodiversity, quantitative structure), hydrological factors influenced two of them (quantitative and qualitative structure), chlorophyll concentration strongly affected only quantitative structure, and diel cycle had an insignificant effect on mesoplankton distribution. Using our current knowledge of the fine structure of the Antarctic Circumpolar Current, we compared effects of four hydrological fronts, i.e., boundaries between different water-masses with distinct environmental characteristics, and eight dynamic jets (narrow yet very intense currents) on mesoplankton distribution. Subtropical, Polar, and Subantarctic Fronts drove quantitative and qualitative structure of mesoplankton assemblages (decreasing in order of influence), while the Southern Boundary affected only qualitative structure. Effects of dynamic jets were insignificant. We suggest that mesoplankton composition is driven by hydrological parameters and further maintained through compartmentalization by fronts. Impact of local eddies and meanders on biodiversity, abundance, qualitative and quantitative structure of mesoplankton is comparable to that of hydrological fronts. Qualitative structure of mesoplankton assemblages mirrors hydrological structure of the Southern Ocean better than quantitative structure and may be recommended for biogeographic analyses of the Southern Ocean. Comparisons with previous reports from the same area retrieved no significant changes in mesoplankton distribution during the period 1992–2009.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Reference81 articles.
1. Annual sedimentation pattern of zooplankton fecal pellets in the southern Ross Sea: what food webs and processes does the record imply?;Accornero,2003
2. Life cycles strategies of Andrews, K.J.H. The distribution and life history of Calanoides acutus (Giesbrecht);Atkinson;Discovery Report,1998a
3. A summer-winter comparison of zooplankton in the oceanic area around South Georgia;Atkinson;Polar Biology,1988
4. Life cycles of Calanoides acutus, Calanus simillimus and Rhincalanus gigas (Copepoda: Calanoida) within the Scotia Sea;Atkinson;Marine Biology,1991
5. Life cycles strategies of epipelagic copepods in the Southern Ocean;Atkinson;Journal of Marine Systems,1998b
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献