Wnt signaling related transcripts and their relationship to energy metabolism in C2C12 myoblasts under temperature stress

Author:

Risha Marua Abu1,Ali Asghar1,Siengdee Puntita1,Trakooljul Nares1,Haack Fiete1,Dannenberger Dirk2,Wimmers Klaus34,Ponsuksili Siriluck1

Affiliation:

1. Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

2. Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

3. Institute of Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany

4. Faculty of Agriculture and Environmental Science, University Rostock, Rostock, Germany

Abstract

Temperature stress is one of the main environmental stressors affecting the welfare, health and productivity of livestock. Temperature changes can modify cell membrane components, disrupting the crosstalk between the cell and its surroundings by affecting signaling pathways including Wnt signaling pathway, which subsequently disrupts cell energy metabolism. The present study aims to understand the effect of temperature stress on the expression of genes involved in Wnt signaling pathways, and their interaction with energy metabolism in C2C12 myoblasts cells. The C2C12 cells were exposed to cold stress (35 °C), mild heat stress (39 °C) and severe heat stress (41 °C), whereas 37 °C was used as control temperature. Transcript levels of important genes involved in Wnt signaling including Axin2, Tnks2, Sfrp1, Dkk1, Dact1, Cby1, Wnt5a, Wnt7a, Wnt11, Porcn, Ror2, Daam1, and Ppp3ca were significantly altered under severe heat stress (41 °C), whereas eight Wnt signaling-related transcripts (Daam1, Ppp3ca, Fzd7, Wnt5a, Porcn, Tnks2, Lrp6, and Aes) were significantly altered under cold stress (35 °C) compared to control. Under heat stress transcripts of the Wnt/β-catenin inhibitors (Sfrp1, Dkk1, and Cby1) and negative regulators (Dact1 and Axin2) are activated. A positive correlation between oxidative phosphorylation and Wnt-related transcripts was found under high temperatures. Transcripts of the cell membrane receptors, including Lrp6 and Fzd7, and the members of Wnt/Ca+2 signaling pathway, including Ppp3ca and Porcn were downregulated under cold stress. Many Wnt signaling-related transcripts were positively correlated with glycolysis under cold stress. These findings indicate a cross-talk between Wnt signaling and energy metabolism under thermal stress.

Funder

Doctoral Project Competition of the Leibniz Institute for Farm Animal Biology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3