K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes

Author:

Orozco-Arias Simon12ORCID,Candamil-Cortés Mariana S.1,Jaimes Paula A.1,Piña Johan S.1,Tabares-Soto Reinel3,Guyot Romain34ORCID,Isaza Gustavo2ORCID

Affiliation:

1. Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia

2. Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia

3. Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia

4. Institut de Recherche pour le Développement, CIRAD, Univ. Montpellier, Montpellier, France

Abstract

Every day more plant genomes are available in public databases and additional massive sequencing projects (i.e., that aim to sequence thousands of individuals) are formulated and released. Nevertheless, there are not enough automatic tools to analyze this large amount of genomic information. LTR retrotransposons are the most frequent repetitive sequences in plant genomes; however, their detection and classification are commonly performed using semi-automatic and time-consuming programs. Despite the availability of several bioinformatic tools that follow different approaches to detect and classify them, none of these tools can individually obtain accurate results. Here, we used Machine Learning algorithms based on k-mer counts to classify LTR retrotransposons from other genomic sequences and into lineages/families with an F1-Score of 95%, contributing to develop a free-alignment and automatic method to analyze these sequences.

Funder

Ministry of Science, Technology and Innovation (Minciencias) of Colombia

Universidad Autónoma de Manizales, Manizales, Colombia

Ecos-Nord

STICAMSUC 21-STIC-13

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference68 articles.

1. Signal processing in sequence analysis: advances in eukaryotic gene prediction;Akhtar;IEEE Journal of Selected Topics in Signal Processing,2008

2. RepetDB: a unified resource for transposable element references;Amselem;Mobile DNA,2019

3. Application of Data Mining Algorithms to Classify Biological Data: The Coffea canephora Genome Case;Arango-López,2017

4. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories;Arkhipova;Mobile DNA,2017

5. Distinguishing endogenous retroviral LTRs from SINE elements using features extracted from evolved side effect machines;Ashlock;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2012

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3