Impacts of heat stress and storm events on the benthic communities of Kenting National Park (Taiwan)

Author:

Ribas-Deulofeu Lauriane123,Denis Vianney4,Château Pierre-Alexandre5,Chen Chaolun Allen1236

Affiliation:

1. Biodiversity Research Center, Academia Sinica, Taipei, Taiwan

2. Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan

3. Department of Life Science, National Taiwan Normal University, Taipei, Taiwan

4. Institute of Oceanography, National Taiwan University, Taipei, Taiwan

5. Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan

6. Department of Life Science, Tunghai University, Taichung, Taiwan

Abstract

Over the past few decades, extreme events—such as ocean warming, typhoons, and coral bleaching—have been increasing in intensity and frequency, threatening coral reefs from the physiological to ecosystem level. In the present study, the impacts of rising seawater temperatures, typhoons, and coral bleaching events on benthic communities were seasonally assessed over a 21 month-period, using photo-transects at 11 sites in Kenting National Park (KNP), Taiwan. Between August 2015 and April 2017, seven typhoon events were recorded and in situ seawater temperatures in KNP reached a maximum of 31.2 °C, as opposed to an average maximum SST of 28.8 °C (2007–2016). The state and response of benthic communities to these events were interpreted based on the environmental conditions of KNP. The repeated storms lowered the levels of thermal stress during the 2015–2016 El Niño event and may have mitigated its impact on the Taiwanese coral reefs. However, storm-induced local shifts from coral to macro-algae dominance were observed. Storms may mitigate the negative effects of heatwaves, but the mechanical damage induced by the storms may also decrease the structural complexity of reefs and their associated diversity. Eventually, despite reef persistence, the composition and function of remnant communities may profoundly diverge from those in regions with less active storms.

Funder

Academia Sinica

Ministry of Science and Technology of Taiwan

The Taiwan International Graduate Program scholarship

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference106 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3