Stable isotope compositions of precipitation over Central Asia

Author:

Yao Junqiang1,Liu Xinchun1ORCID,Hu Wenfeng2

Affiliation:

1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi, Xinjiang, China

2. Fuyang Normal University, Fuyang, Xinjiang, China

Abstract

Central Asia is one of the driest regions in the world with a unique water cycle and a complex moisture transport process. However, there is little information on the precipitation δ18O content in Central Asia. We compiled a precipitation δ18O database from 47 meteorological stations across Central Asia to reveal its spatial-temporal characteristics. We determined the relationship between precipitation δ18O and environmental variables and investigated the relationship between δ18O and large-scale atmospheric circulation. The Central Asia meteoric water line was established as δ2H = 7.30 δ18O + 3.12 (R2 = 0.95, n = 727, p < 0.01), and precipitation δ18O ranged from +2‰ to −25.4‰ with a mean of −8.7‰. The precipitation δ18O over Central Asia was related to environmental variables. The δ18O had a significant positive correlation with temperature, and the δ18O-temperature gradient ranged from 0.28‰/°C to 0.68‰/°C. However, the dependence of δ18O on precipitation was unclear; a significant precipitation effect was only observed at the Zhangye and Teheran stations, showing δ18O-precipitation gradients of 0.20‰/mm and −0.08‰/mm, respectively. Latitude and altitude were always significantly correlated with annual δ18O, when considering geographical controls on δ18O, with δ18O/LAT and δ18O/ALT gradients of −0.42‰/° and −0.001‰/m, respectively. But both latitude and longitude were significantly correlated with δ18O in winter. The relationship between δ18O and large-scale atmospheric circulation suggested that the moisture in Central Asia is mainly transported by westerly circulation and is indirectly affected by the Indian monsoon. Meanwhile, the East Asian monsoon may affect the precipitation δ18O content in westerly and monsoon transition regions. These results improve our understanding of the precipitation δ18O and moisture transport in Central Asia, as well as the paleoclimatology and hydrology processes in Central Asia.

Funder

Natural Science Foundation of the Xinjiang Uygur Autonomous Region

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3