ensembleTax: an R package for determinations of ensemble taxonomic assignments of phylogenetically-informative marker gene sequences

Author:

Catlett Dylan1,Son Kevin1,Liang Connie1

Affiliation:

1. Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America

Abstract

Background High-throughput sequencing of phylogenetically informative marker genes is a widely used method to assess the diversity and composition of microbial communities. Taxonomic assignment of sampled marker gene sequences (referred to as amplicon sequence variants, or ASVs) imparts ecological significance to these genetic data. To assign taxonomy to an ASV, a taxonomic assignment algorithm compares the ASV to a collection of reference sequences (a reference database) with known taxonomic affiliations. However, many taxonomic assignment algorithms and reference databases are available, and the optimal algorithm and database for a particular scientific question is often unclear. Here, we present the ensembleTax R package, which provides an efficient framework for integrating taxonomic assignments predicted with any number of taxonomic assignment algorithms and reference databases to determine ensemble taxonomic assignments for ASVs. Methods The ensembleTax R package relies on two core algorithms: taxmapper and assign.ensembleTax. The taxmapper algorithm maps taxonomic assignments derived from one reference database onto the taxonomic nomenclature (a set of taxonomic naming and ranking conventions) of another reference database. The assign.ensembleTax algorithm computes ensemble taxonomic assignments for each ASV in a data set based on any number of taxonomic assignments determined with independent methods. Various parameters allow analysts to prioritize obtaining either more ASVs with more predicted clade names or more robust clade name predictions supported by multiple independent methods in ensemble taxonomic assignments. Results The ensembleTax R package is used to compute two sets of ensemble taxonomic assignments for a collection of protistan ASVs sampled from the coastal ocean. Comparisons of taxonomic assignments predicted by individual methods with those predicted by ensemble methods show that conservative implementations of the ensembleTax package minimize disagreements between taxonomic assignments predicted by individual and ensemble methods, but result in ASVs with fewer ranks assigned taxonomy. Less conservative implementations of the ensembleTax package result in an increased fraction of ASVs classified at all taxonomic ranks, but increase the number of ASVs for which ensemble assignments disagree with those predicted by individual methods. Discussion We discuss how implementation of the ensembleTax R package may be optimized to address specific scientific objectives based on the results of the application of the ensembleTax package to marine protist communities. While further work is required to evaluate the accuracy of ensemble taxonomic assignments relative to taxonomic assignments predicted by individual methods, we also discuss scenarios where ensemble methods are expected to improve the accuracy of taxonomy prediction for ASVs.

Funder

National Aeronautics and Space Administration Biodiversity and Ecological Forecasting program

Bureau of Ocean and Energy Management Ecosystem Studies Program

NOAA

NASA Earth and Space Science Fellowship

UC Santa Barbara Coastal Fund

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference46 articles.

1. Revisions to the classification, nomenclature, and diversity of eukaryotes;Adl;Journal of Eukaryotic Microbiology,2019

2. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists;Adl;Journal of Eukaryotic Microbiology,2005

3. The revised classification of eukaryotes;Adl;Journal of Eukaryotic Microbiology,2012

4. rmarkdown: dynamic documents for R;Allaire,2020

5. GenBank;Benson;Nucleic Acids Research,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3