The effects of genetic drift and genomic selection on differentiation and local adaptation of the introduced populations of Aedes albopictus in southern Russia

Author:

Konorov Evgenii A.12,Yurchenko Vyacheslav34ORCID,Patraman Ivan35,Lukashev Alexander3,Oyun Nadezhda356

Affiliation:

1. Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russian Federation

2. V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation

3. Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russian Federation

4. Life Science Research Centre, University of Ostrava, Ostrava, Czech Republic

5. Federal State Budgetary Institution “National Research Centre for Epidemiology and Microbiology named after the Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation

6. Department of Entomology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation

Abstract

Background Asian tiger mosquito Aedes albopictus is an arbovirus vector that has spread from its native habitation areal in Southeast Asia throughout North and South Americas, Europe, and Africa. Ae. albopictus was first detected in the Southern Federal District of the Russian Federation in the subtropical town of Sochi in 2011. In subsequent years, this species has been described in the continental areas with more severe climate and lower winter temperatures. Methods Genomic analysis of pooled Ae. albopictus samples collected in the mosquito populations in the coastal and continental regions of the Krasnodar Krai was conducted to look for the genetic changes associated with the spread and potential cold adaptation in Ae. albopictus. Results The results of the phylogenetic analysis based on mitochondrial genomes corresponded well with the hypothesis that Ae. albopictus haplotype A1a2a1 was introduced into the region from a single source. Population analysis revealed the role of dispersal and genetic drift in the local adaptation of the Asian tiger mosquito. The absence of shared haplotypes between the samples and high fixation indices suggest that gene flow between samples was heavily restricted. Mitochondrial and genomic differentiation together with different distances between dispersal routes, natural and anthropogenic barriers and local effective population size reduction could lead to difficulties in local climatic adaptations due to reduced selection effectiveness. We have found genomic regions with selective sweep patterns which can be considered as having been affected by recent selection events. The genes located in these regions participate in neural protection, lipid conservation, and cuticle formation during diapause. These processes were shown to be important for cold adaptation in the previous transcriptomic and proteomic studies. However, the population history and relatively low coverage obtained in the present article could have negatively affect sweep detection.

Funder

Russian Science Foundation

European Regional Funds

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3