Effect of domain knowledge encoding in CNN model architecture—a prostate cancer study using mpMRI images

Author:

Sobecki Piotr12,Jóźwiak Rafał12,Sklinda Katarzyna3,Przelaskowski Artur2

Affiliation:

1. Applied Artificial Intelligence Laboratory, National Information Processing Institute, Warsaw, Mazowieckie, Poland

2. Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

3. Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland

Abstract

Background Prostate cancer is one of the most common cancers worldwide. Currently, convolution neural networks (CNNs) are achieving remarkable success in various computer vision tasks, and in medical imaging research. Various CNN architectures and methodologies have been applied in the field of prostate cancer diagnosis. In this work, we evaluate the impact of the adaptation of a state-of-the-art CNN architecture on domain knowledge related to problems in the diagnosis of prostate cancer. The architecture of the final CNN model was optimised on the basis of the Prostate Imaging Reporting and Data System (PI-RADS) standard, which is currently the best available indicator in the acquisition, interpretation, and reporting of prostate multi-parametric magnetic resonance imaging (mpMRI) examinations. Methods A dataset containing 330 suspicious findings identified using mpMRI was used. Two CNN models were subjected to comparative analysis. Both implement the concept of decision-level fusion for mpMRI data, providing a separate network for each multi-parametric series. The first model implements a simple fusion of multi-parametric features to formulate the final decision. The architecture of the second model reflects the diagnostic pathway of PI-RADS methodology, using information about a lesion’s primary anatomic location within the prostate gland. Both networks were experimentally tuned to successfully classify prostate cancer changes. Results The optimised knowledge-encoded model achieved slightly better classification results compared with the traditional model architecture (AUC = 0.84 vs. AUC = 0.82). We found the proposed model to achieve convergence significantly faster. Conclusions The final knowledge-encoded CNN model provided more stable learning performance and faster convergence to optimal diagnostic accuracy. The results fail to demonstrate that PI-RADS-based modelling of CNN architecture can significantly improve performance of prostate cancer recognition using mpMRI.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3