Identification of key genes and crucial pathways for major depressive disorder using peripheral blood samples and chronic unpredictable mild stress rat models

Author:

He Jun12,Ren Zhenkui23,Xia Wansong2,Zhou Cao4,Bi Bin4,Yu Wenfeng3,Zuo Li1

Affiliation:

1. Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China

2. Department of Laboratory Medicine, The Second People’s Hospital of Guizhou Province, Guiyang, China

3. Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, China

4. Psychosomatic Department, The Second People’s Hospital of Guizhou Province, Guiyang, China

Abstract

Background Accurate diagnosis of major depressive disorder (MDD) remains difficult, and one of the key challenges in diagnosing MDD is the lack of reliable diagnostic biomarkers. The objective of this study was to explore gene networks and identify potential biomarkers for MDD. Methods In the present study, we performed a comprehensive analysis of the mRNA expression profiles using blood samples of four patients with MDD and four controls by RNA sequencing. Differentially expressed genes (DEGs) were screened, and functional and pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. All DEGs were inputted to the STRING database to build a PPI network, and the top 10 hub genes were screened using the cytoHubba plugin of the Cytoscape software. The relative expression of 10 key genes was identified by quantitative real-time polymerase chain reaction (qRT-PCR) of blood samples from 50 MDD patients and 50 controls. Plasma levels of SQSTM1 and TNFα were measured using an enzyme-linked immunosorbent assay in blood samples of 44 MDD patients and 44 controls. A sucrose preference test was used to evaluate depression-like behavior in chronic unpredictable mild stress (CUMS) model rats. Immunofluorescence assay and western blotting were performed to study the expression of proteins in the brain samples of CUMS model rats Results We identified 247 DEGs that were closely associated with MDD. Gene ontology analyses suggested that the DEGs were mainly enriched in negative regulation of transcription by RNA polymerase II promoter, cytoplasm, and protein binding. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the DEGs were significantly enriched in the MAPK signaling pathway. Ten hub genes were screened through the PPI network, and qRT-PCR assay revealed that one and six genes were downregulated and upregulated, respectively; however, SMARCA2, PPP3CB, and RAB5C were not detected. Pathway enrichment analysis for the 10 genes showed that the mTOR signaling pathway was also enriched. A strong positive correlation was observed between SQSTM1 and TNFα protein levels in patients with MDD. LC3 II and SQSTM1 protein levels were increased in the CUMS rat model; however, p-mTOR protein levels were decreased. The sucrose preference values decreased in the CUMS rat model. Conclusions We identified 247 DEGs and constructed an MDD-specific network; thereafter, 10 hub genes were selected for further analysis. Our results provide novel insights into the pathogenesis of MDD. Moreover, SQSTM1, which is related to autophagy and inflammatory reactions, may play a key role in MDD. SQSTM1 may be used as a promising therapeutic target in MDD; additionally, more molecular mechanisms have been suggested that should be focused on in future in vivo and in vitro studies.

Funder

The National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3