Cellulose aerogel composites as oil sorbents and their regeneration

Author:

Paulauskiene TatjanaORCID,Uebe JochenORCID,Ziogas Mindaugas

Abstract

Background With every oil tanker comes the risk of an accident and oil spill. Sorbents are the most suitable means to remove oil spills. Aerogels as sorbents have high porosity and can be made from cellulose from paper waste. The literature does not distinguish between paper and cardboard as sources of cellulose aerogels and little is known about composites of cellulose aerogels consisting of cellulose fibres and chemically untreated, unprocessed fibres or particles of straw, wool, macroalgae or cellulose acetate from cigarette butts. In this study, the sorption properties for marine diesel oil and biodiesel of such aerogels and their regenerative capacity with bioethanol were investigated. Methods Cellulose aerogels were prepared from office paper and cardboard waste without and with chemically untreated algae, straw, wool and cellulose acetate as a composite by freeze drying. All samples were hydrophobised with methylsilane. The density to calculate the porosity and the contact angle were determined. Then the sorption capacity was determined over five cycles of sorption of oil and regeneration with bioethanol. Results The average contact angle of all samples was 125°, indicating hydrophobicity. Paper-based aerogels were found to consistently have higher sorption capacities for biodiesel, marine diesel oil and bioethanol than cardboard-based aerogels. In particular, the wool/cellulose aerogel composite was found to have better sorption capacity for biodiesel, marine diesel oil and bioethanol than all other samples. The cellulose acetate/cellulose aerogel composite showed significantly higher sorption capacities than the paper and cardboard control samples (highest value is 32.25 g g−1) only when first used as a sorbent for biodiesel, but with a rapid decrease in the following cycles.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3