Utilizing network pharmacology and molecular docking to explore the underlying mechanism of Guizhi Fuling Wan in treating endometriosis

Author:

Wang Haoxian1,Zhou Gang2,Zhuang Mingyan3,Wang Wei2,Fu Xianyun1

Affiliation:

1. Medical College, China Three Gorges University, Yichang, China

2. College of Traditional Chinese Medicine, Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China

3. Maternity and Child Health Care Hospital, Three Gorges University, Yichang, China

Abstract

Background Guizhi Fuling Wan (GZFLW) is a widely used classical Chinese herbal formulae prescribed for the treatment of endometriosis (EMs). This study aimed to predict the key targets and mechanisms of GZFLW in the treatment of EMs by network pharmacology and molecular docking. Methods Firstly, related compounds and targets of GZFLW were identified through the TCMSP, BATMAN-TCM and CASC database. Then, the EMs target database was built by GeneCards. The overlapping targets between GZFLW and EMs were screened out, and then data of the PPI network was obtained by the STRING Database to analyze the interrelationship of these targets. Furthermore, a topological analysis was performed to screen the hub targets. After that, molecular docking technology was used to confirm the binding degree of the main active compounds and hub targets. Finally, the DAVID database and Metascape database were used for GO and KEGG enrichment analysis. Results A total of 89 GZFLW compounds and 284 targets were collected. One hundred one matching targets were picked out as the correlative targets of GZFLW in treating EMs. Among these, 25 significant hub targets were recognized by the PPI network. Coincidently, molecular docking simulation indicated that the hub targets had a good bonding activity with most active compounds (69.71%). Furthermore, 116 items, including the inflammatory reaction, RNA polymerase, DNA transcription, growth factor activity, and steroid-binding, were selected by GO enrichment analysis. Moreover, the KEGG enrichment analysis results included 100 pathways focused on the AGE-RAGE pathway, HIF pathway, PI3K Akt pathway, MAPK pathway, and TP53 pathway, which exposed the potential mechanisms of GZFLW in treating EMs. Also, the MTT colorimetric assay indicated that the cell proliferation could be inhibited by GZFLW. Compared with the control group, the protein levels of P53, BAX, and caspase3 in the drug groups were all increased in Western blotting results. The results of flow cytometry showed that the percentage of apoptotic cells in the GZFLW group was significantly higher than that in the control group. Conclusion Through the exploration of network pharmacology and molecular docking technology, GZFLW has a therapeutic effect on EMs through multi-target mechanism. This study provided a good foundation for further experimental research.

Funder

The National Natural Science Foundation of China

Scientific Research Foundation of HuBei provincial health department

Yichang Medical and Health Research Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3