Systematic analysis of JmjC gene family and stress­-response expression of KDM5 subfamily genes in Brassica napus

Author:

He Xinghui123,Wang Qianwen3,Pan Jiao123,Liu Boyu123,Ruan Ying123,Huang Yong123

Affiliation:

1. Key Laboratory of Crop Epigenetic Regulation and Development, Hunan Province, Changsha, China

2. Key Laboratory of Plant Genetics and Molecular Biology of Education Department, Changsha, Hunan Province, China

3. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China

Abstract

Background Jumonji C (JmjC) proteins exert critical roles in plant development and stress response through the removal of lysine methylation from histones. Brassica napus, which originated from spontaneous hybridization by Brassica rapa and Brassica oleracea, is the most important oilseed crop after soybean. In JmjC proteins of Brassica species, the structure and function and its relationship with the parents and model plant Arabidopsis thaliana remain uncharacterized. Systematic identification and analysis for JmjC family in Brassica crops can facilitate the future functional characterization and oilseed crops improvement. Methods Basing on the conserved JmjC domain, JmjC homologs from the three Brassica species, B. rapa (AA), B. oleracea (CC) and B. napus, were identified from the Brassica database. Some methods, such as phylogenic analysis, chromosomal mapping, HMMER searching, gene structure display and Logos analysis, were used to characterize relationships of the JmjC homologs. Synonymous and nonsynonymous nucleotide substitutions were used to infer the information of gene duplication among homologs. Then, the expression levels of BnKDM5 subfamily genes were checked under abiotic stress by qRT-PCR. Results Sixty-five JmjC genes were identified from B. napus genome, 29 from B. rapa, and 23 from B. oleracea. These genes were grouped into seven clades based on the phylogenetic analysis, and their catalytic activities of demethylation were predicted. The average retention rate of B. napus JmjC genes (B. napus JmjC gene from B. rapa (93.1%) and B. oleracea (82.6%)) exceeded whole genome level. JmjC sequences demonstrated high conservation in domain origination, chromosomal location, intron/exon number and catalytic sites. The gene duplication events were confirmed among the homologs. Many of the BrKDM5 subfamily genes showed higher expression under drought and NaCl treatments, but only a few genes were involved in high temperature stress. Conclusions This study provides the first genome-wide characterization of JmjC genes in Brassica species. The BnJmjC exhibits higher conservation during the formation process of allotetraploid than the average retention rates of the whole B. napus genome. Furthermore, expression profiles of many genes indicated that BnKDM5 subfamily genes are involved in stress response to salt, drought and high temperature.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3