Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold

Author:

Barlian Anggraini1,Judawisastra Hermawan2,Alfarafisa Nayla M.1,Wibowo Untung A.2,Rosadi Imam3

Affiliation:

1. School of Life Sciences and Technology, Institute of Technology Bandung, Bandung, West Java, Indonesia

2. Faculty of Mechanical and Aerospace Engineering, Institute of Technology Bandung, Bandung, West Java, Indonesia

3. Klinik Hayandra, Jakarta, Indonesia

Abstract

Articular cartilage is an avascular tissue with limited regenerative property. Therefore, a defect or trauma in articular cartilage due to disease or accident can lead to progressive tissue deterioration. Cartilage tissue engineering, by replacing defective cartilage tissue, is a method for repairing such a problem. In this research, three main aspects—cell, biomaterial scaffold, and bioactive factors—that support tissue engineering study were optimized. Adipose-derived mesenchymal stem cells (ADSC) that become cartilage were grown in an optimized growth medium supplemented with either platelet rich plasma (PRP) or L-ascorbic acid (LAA). As the characterization result, the ADSC used in this experiment could be classified as Mesenchymal Stem Cell (MSC) based on multipotency analysis and cell surface marker analysis. The biomaterial scaffold was fabricated from the Bombyx morii cocoon using silk fibroin by salt leaching method and was engineered to form different sizes of pores to provide optimized support for cell adhesion and growth. Biocompatibility and cytotoxicity evaluation was done using MTT assay to optimize silk fibroin concentration and pore size. Characterized ADSC were grown on the optimized scaffold. LAA and PRP were chosen as bioactive factors to induce ADSC differentiation to become chondrocytes. The concentration optimization of LAA and PRP was analyzed by cell proliferation using MTT assay and chondrogenic differentiation by measuring glycosaminoglycan (GAG) using Alcian Blue at 605 nm wavelength. The optimum silk fibroin concentration, pore size, LAA concentration, and PRP concentration were used to grow and differentiate characterized ADSC for 7, 14, and 21 days. The cell morphology on the scaffold was analyzed using a scanning electron microscope (SEM). The result showed that the ADSC could adhere on plastic, express specific cell surface markers (CD73, CD90, and CD105), and could be differentiated into three types of mature cells. The silk fibroin scaffold made from 12% w/v concentration formed a 500 µm pore diameter (SEM analysis), and was shown by MTT assay to be biocompatible and to facilitate cell growth. The optimum concentrations of the bioactive factors LAA and PRP were 50 µg/mL and 10%, respectively. GAG analysis with Alcian Blue staining suggested that PRP induction medium and LAA induction medium on 12% w/v scaffold could effectively promote not only cell adhesion and cell proliferation but also chondrogenic differentiation of ADSC within 21 days of culture. Therefore, this study provides a new approach to articular tissue engineering with a combination of ADSC as cell source, LAA and PRP as bioactive factors, and silk fibroin as a biocompatible and biodegradable scaffold.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3