A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host

Author:

Leung ChristelleORCID,Breton SophieORCID,Angers Bernard

Abstract

Background Survival in temporally or spatially changing environments is a prerequisite for the perpetuation of a given species. In addition to genetic variation, the role of epigenetic processes is crucial in the persistence of organisms. For instance, mechanisms such as developmental flexibility enable the adjustment of the phenotype of a given individual to changing conditions throughout its development. However, the extent of factors other than genetic variability, like epigenetic processes, in the production of alternative phenotype and the consequences in realized ecological niches is still unclear. Methods In this study, we compared the extent of realized niches between asexual and sexual individuals from different environments. We used a trait-based ecology approach exploiting trophic and locomotive structures to infer the environment that each biotype actually used. More specifically, we compared the morphology of the all-female clonal and sperm-dependent fish Chrosomus eos-neogaeus to that of their sexual host species C. eos in common garden and natural conditions. Results Transfer from natural to controlled conditions resulted in a similar shift in measured morphology for clonal and sexual individuals suggesting comparable level of flexibility in both kinds of organisms. However, clonal, but not sexual, individuals displayed a consistent phenotype when reared in uniform conditions indicating that in absence of genetic variation, one phenotype corresponds to one niche. This contrasted with results from natural conditions where clones were morphologically as variable as sexual individuals within a sampled site. In addition, similar phenotypic changes for both clonal and sexual individuals were observed among the majority of sampled sites, indicating that they responded similarly to the same environments. Discussion Our results indicated that clones can efficiently use different niches and may evolve in a range of environmental conditions comparable to that of a sexual species, thus underlying the importance of factors other than genetic variability, like epigenetic processes, for coping with environmental heterogeneity.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3