Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation

Author:

Badawi Sufian A.1,Fraz Muhammad Moazam1

Affiliation:

1. School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad, Pakistan

Abstract

Segmentation of the retinal blood vessels using filtering techniques is a widely used step in the development of an automated system for diagnostic retinal image analysis. This paper optimized the blood vessel segmentation, by extending the trainable B-COSFIRE filter via identification of more optimal parameters. The filter parameters are introduced using an optimization procedure to three public datasets (STARE, DRIVE, and CHASE-DB1). The suggested approach considers analyzing thresholding parameters selection followed by application of background artifacts removal techniques. The approach results are better than the other state of the art methods used for vessel segmentation. ANOVA analysis technique is also used to identify the most significant parameters that are impacting the performance results (p-value ¡ 0.05). The proposed enhancement has improved the vessel segmentation accuracy in DRIVE, STARE and CHASE-DB1 to 95.47, 95.30 and 95.30, respectively.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference47 articles.

1. Retinal imaging and image analysis;Abràmoff;IEEE Reviews in Biomedical Engineering,2010

2. An active contour model for segmenting and measuring retinal vessels;Al-Diri;IEEE Transactions on Medical imaging,2009

3. Increased generalization capability of trainable cosfire filters with application to machine vision;Azzopardi,2016

4. Gender recognition from face images with trainable COSFIRE filters;Azzopardi,2016

5. A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model;Azzopardi;Biological Cybernetics,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3