The impact of climate change on flow conditions and wetland ecosystems in the Lower Biebrza River (Poland)

Author:

Mirosław-Świątek Dorota1,Marcinkowski Paweł1ORCID,Kochanek Krzysztof2,Wassen Martin J.3ORCID

Affiliation:

1. Department of Hydrology, Meteorology and Water Management, Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, Warsaw, Poland

2. Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland

3. Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands

Abstract

Water plays a key role in the functioning of wetlands and a shortage or contamination of it leads to changes in habitat conditions and degradation of ecosystems. This article scrutinizes the impact of climate change on the hydrological characteristics of floods (maximum flow, duration, volume) in the River Biebrza wetlands (North-East Poland). We analysed the trends in duration and volume of flood and maximum discharges in the historical period 1970–2000 and predicted these for the future periods 2020–2050 and 2070–2100, respectively. Next we assessed the impact on the wetland ecosystems. The basis of our assessments consists of statistical analyses of hydrographs and calculations by the Soil and Water Assessment Tool hydrological model and considering nine bias-corrected climate models. The results indicate that both volume and duration of winter floods will keep increasing continuously under Representative Concentration Pathways 4.5 and 8.5. The reduction in peak annual floods is expected to decline slightly in both scenarios. On the other hand, the analysis of trends in mean and standard deviation revealed negligible tendencies in the datasets for summer and winter hydrological seasons within the three time frames analysed (1970–2000; 2020–2050; 2070–2100). We foresee several future implications for the floodplain ecosystems. Shifts in transversal ecosystem zonation parallel to the river will likely take place with more highly productive flood tolerant vegetation types. Nutrient availability and algal blooms during spring inundations will likely increase. Slowdown of organic matter turnover later in summer will lead to a higher peat accumulation rate. Logistical problems with summer mowing and removal of bushes in winter may enhance shrub encroachment.

Funder

Polish National Agency for Academic Exchange

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3