Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations

Author:

Qi Kaibin12,Pang Xueyong1,Yang Bing1,Bao Weikai1

Affiliation:

1. CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China

2. University of Chinese Academy of Sciences, Beijing, China

Abstract

Understanding ecological stoichiometric characteristics of soil nutrient elements, such as carbon (C), nitrogen (N) and phosphorus (P) is crucial to guide ecological restoration of plantations in ecologically vulnerable areas, such as alpine and subalpine regions. However, there has been only a few related studies, and thus whether and how different tree species would affect soil C:N:P ecological stoichiometry remains unclear. We compared soil C:N:P ecological stoichiometry of Pinus tabulaeformis, Larix kaempferi and Cercidiphyllum japonicum to primary shrubland in a subalpine region. We observed strong tree-specific and depth-dependent effects on soil C:N:P stoichiometry in subalpine plantations. In general, the C:N, C:P and N:P of topsoil (0–10 cm) are higher than subsoil (>10 cm) layer at 0–30 cm depth profiles. The differences in C:N, N:P and C:P at the topsoil across target tree species were significantly linked to standing litter stock, tree biomass/total aboveground biomass and Margalef’s index of plant community, respectively, whereas the observed variations of C:N, N:P and C:P ratio among soil profiles are closely related to differences in soil bulk density, soil moisture, the quantity and quality of aboveground litter inputs as well as underground fine root across plantations examined. Our results highlight that soil nutrients in plantation depend on litter quantity and quality of selected tree species as well as soil physical attributes. Therefore, matching site with trees is crucial to enhance ecological functioning in degraded regions resulting from human activity.

Funder

Major Science Technology Project of Sichuan Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3