Improving the physical, mechanical and energetic properties of Quercus spp. wood pellets by adding pine sawdust

Author:

Núñez-Retana Víctor Daniel1,Rosales-Serna Rigoberto2,Prieto-Ruíz José Ángel3ORCID,Wehenkel Christian4ORCID,Carrillo-Parra Artemio4

Affiliation:

1. Maestría Institucional en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico

2. Campus Valle del Guadiana, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Durango, Durango, México

3. Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico

4. Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico

Abstract

Background Biomass usage for energy purposes has emerged in response to global energy demands and environmental problems. The large amounts of by-products generated during logging are rarely utilized. In addition, some species (e.g., Quercus spp.) are considered less valuable and are left in the cutting areas. Production of pellets from this alternative source of biomass may be possible for power generation. Although the pellets may be of lower quality than other types of wood pellets, because of their physical and technological properties, the addition of different raw materials may improve the characteristics of the oak pellets. Methods Sawdust from the oak species Quercus sideroxyla, Q. rugosa, Q. laeta and Q. conzattii was mixed with sawdust from the pine Pinus durangensis in different ratios of oak to pine (100:0, 80:20, 60:40, 40:60 and 20:80). Physical and mechanical properties of the pellets were determined, and calorific value tests were carried out. For each variable, Kolmogorov–Smirnov normality and Kruskal–Wallis tests were performed and Pearson’s correlation coefficients were determined (considering a significance level of p < 0.05). Results The moisture content and fixed carbon content differed significantly (p < 0.05) between the groups of pellets (i.e., pellets made with different sawdust mixtures). The moisture content of all pellets was less than 10%. However, volatile matter and ash content did not differ significantly between groups (p ≥ 0.05). The ash content was less than 0.7% in all mixtures. The addition of P. durangensis sawdust to the mixtures improved the bulk density of the pellets by 18%. Significant differences (p < 0.05) in particle density were observed between species, mixtures and for the species × mixture interaction. The particle density was highest in the 80:20 and 60:40 mixtures, with values ranging from 1,245 to 1,349 kg m−3. Bulk density and particle density of the pellets were positively correlated with the amount of P. durangensis sawdust included. The mechanical hardness and impact resistance index (IRI) differed significantly (p < 0.05) between groups. The addition of pine sawdust decreased the mechanical hardness of the pellets, up to 24%. The IRI was highest (138) in the Q. sideroxyla pellets (100:0). The mechanical hardness and IRI of the pellets were negatively correlated with the amount of P. durangensis sawdust added. The bulk density of the pellets was negatively correlated with mechanical hardness and IRI. The calorific value of mixtures and the species × mixture interaction differed significantly between groups. Finally, the mean calorific value was highest (19.8 MJ kg−1) in the 20:80 mixture. The calorific value was positively related to the addition of P. durangensis sawdust.

Funder

Fondo de Sustentabilidad Energética

Clúster de Biocombustibles Sólidos para la generación térmica y eléctrica y CONACYT

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3