The effect of CO2enrichment on net photosynthesis of the red algaFurcellaria lumbricalisin a brackish water environment

Author:

Pajusalu Liina1,Martin Georg1,Paalme Tiina1,Põllumäe Arno1

Affiliation:

1. Department of Marine Biology, Estonian Marine Institute, University of Tartu, Tallinn, Estonia

Abstract

Anthropogenic carbon dioxide (CO2) emissions to the atmosphere are causing reduction in the global ocean pH, also known as ocean acidification. This change alters the equilibrium of different forms of dissolved inorganic carbon in seawater that macroalgae use for their photosynthesis. In the Baltic Sea, benthic macroalgae live in a highly variable environment caused by seasonality and rapid changes in meteorological conditions. The effect of increasing water CO2concentration on the net photosynthesis of the red macroalgaeFurcellaria lumbricalis(Hudson) Lamouroux was tested in short-term mesocosm experiments conducted in Kõiguste Bay (N Gulf of Riga) in June–July 2012 and 2013. Separate mesocosms were maintained at different pCO2levels: ca. 2,000, ca. 1,000 and ca. 200 µatm. In parallel, different environmental factors were measured such as nutrients, light and water temperature. Thus, the current study also investigated whether elevated pCO2and different environmental factors exerted interactive effects on the photosynthetic rate ofF. lumbricalis. In addition, laboratory experiments were carried out to determine the optimal temperature for photosynthesis ofF. lumbricalis. The results of our field experiments demonstrated that elevated pCO2levels may remarkably enhance the photosynthetic rate ofF. lumbricalis. However, the magnitude of this effect is altered by different environmental factors, mainly by changes in water temperature.

Funder

Institutional Research Funding

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3