Comparison of the fecal microbiota of two free-ranging Chinese subspecies of the leopard (Panthera pardus) using high-throughput sequencing

Author:

Han Siyu1,Guan Yu1,Dou Hailong2,Yang Haitao1,Yao Meng1,Ge Jianping1,Feng Limin1

Affiliation:

1. Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, State Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard National Park, State Forestry and Grassland Administration Amur tiger and Amur leopard Monitoring and Research Center, College of Life Science, Beijing Normal University, Beijing, China

2. College of Life Sciences, Qufu Normal University, Shandong, China

Abstract

The analysis of gut microbiota using fecal samples provides a non-invasive approach to understand the complex interactions between host species and their intestinal bacterial community. However, information on gut microbiota for wild endangered carnivores is scarce. The goal of this study was to describe the gut microbiota of two leopard subspecies, the Amur leopard (Panthera pardus orientalis) and North Chinese leopard (Panthera pardus japonensis). Fecal samples from the Amur leopard (n = 8) and North Chinese leopard (n = 13) were collected in Northeast Tiger and Leopard National Park and Shanxi Tieqiaoshan Provincial Nature Reserve in China, respectively. The gut microbiota of leopards was analyzed via high-throughput sequencing of the V3–V4 region of bacterial 16S rRNA gene using the Life Ion S5™ XL platform. A total of 1,413,825 clean reads representing 4,203 operational taxonomic units (OTUs) were detected. For Amur leopard samples, Firmicutes (78.4%) was the dominant phylum, followed by Proteobacteria (9.6%) and Actinobacteria (7.6%). And for the North Chinese leopard, Firmicutes (68.6%), Actinobacteria (11.6%) and Fusobacteria (6.4%) were the most predominant phyla. Clostridiales was the most diverse bacterial order with 37.9% for Amur leopard and 45.7% for North Chinese leopard. Based on the beta-diversity analysis, no significant difference was found in the bacterial community composition between the Amur leopard and North Chinese leopard samples. The current study provides the initial data about the composition and structure of the gut microbiota for wild Amur leopards and North Chinese leopards, and has laid the foundation for further investigations of the health, dietary preferences and physiological regulation of leopards.

Funder

National Natural Science Foundation of China

National Scientific and Technical Foundation Project of China

Cyrus Tang Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference97 articles.

1. The mammals of China and Mongolia;Allen;American Museum of Natural History,1938

2. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes;Amato;The ISME journal,2013

3. Comparison of fecal microbiota of three captive carnivore species inhabiting Korea;An;Journal of Veterinary Medical Science,2017

4. Enterotypes of the human gut microbiome;Arumugam;Nature,2011

5. The microbiome of animals: implications for conservation biology;Bahrndorff;International journal of genomics,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3