Spatial near future modeling of land use and land cover changes in the temperate forests of Mexico

Author:

Prieto-Amparán Jesús A.1,Villarreal-Guerrero Federico1,Martínez-Salvador Martin1,Manjarrez-Domínguez Carlos2,Vázquez-Quintero Griselda2,Pinedo-Alvarez Alfredo1

Affiliation:

1. Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico

2. Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico

Abstract

The loss of temperate forests of Mexico has continued in recent decades despite wide recognition of their importance to maintaining biodiversity. This study analyzes land use/land cover change scenarios, using satellite images from the Landsat sensor. Images corresponded to the years 1990, 2005 and 2017. The scenarios were applied for the temperate forests with the aim of getting a better understanding of the patterns in land use/land cover changes. The Support Vector Machine (SVM) multispectral classification technique served to determine the land use/land cover types, which were validated through the Kappa Index. For the simulation of land use/land cover dynamics, a model developed in Dinamica-EGO was used, which uses stochastic models of Markov Chains, Cellular Automata and Weight of Evidences. For the study, a stationary, an optimistic and a pessimistic scenario were proposed. The projections based on the three scenarios were simulated for the year 2050. Five types of land use/land cover were identified and evaluated. They were primary forest, secondary forest, human settlements, areas without vegetation and water bodies. Results from the land use/land cover change analysis show a substantial gain for the secondary forest. The surface area of the primary forest was reduced from 55.8% in 1990 to 37.7% in 2017. Moreover, the three projected scenarios estimate further losses of the surface are for the primary forest, especially under the stationary and pessimistic scenarios. This highlights the importance and probably urgent implementation of conservation and protection measures to preserve these ecosystems and their services. Based on the accuracy obtained and on the models generated, results from these methodologies can serve as a decision tool to contribute to the sustainable management of the natural resources of a region.

Funder

Consejo Nacional de Ciencia y Tecnología, Mexico

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3