Validity and reliability of inertial sensors for elbow and wrist range of motion assessment

Author:

Costa Vanina12,Ramírez Óscar2,Otero Abraham1ORCID,Muñoz-García Daniel3ORCID,Uribarri Sandra4,Raya Rafael12

Affiliation:

1. Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain

2. Werium Assistive Solutions Ltd., Madrid, Spain

3. Motion in Brains Research Group, Neuroscience and Motion Science Institute, The Center for Advanced Studies University La Salle (Universidad Autónoma de Madrid), Madrid, Spain

4. The Center for Advanced Studies University La Salle, Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Background Elbow and wrist chronic conditions are very common among musculoskeletal problems. These painful conditions affect muscle function, which ultimately leads to a decrease in the joint’s Range Of Motion (ROM). Due to their portability and ease of use, goniometers are still the most widespread tool for measuring ROM. Inertial sensors are emerging as a digital, low-cost and accurate alternative. However, whereas inertial sensors are commonly used in research studies, due to the lack of information about their validity and reliability, they are not widely used in the clinical practice. The goal of this study is to assess the validity and intra-inter-rater reliability of inertial sensors for measuring active ROM of the elbow and wrist. Materials and Methods Measures were taken simultaneously with inertial sensors (Werium system) and a universal goniometer. The process involved two physiotherapists (“rater A” and “rater B”) and an engineer responsible for the technical issues. Twenty-nine asymptomatic subjects were assessed individually in two sessions separated by 48 h. The procedure was repeated by rater A followed by rater B with random order. Three repetitions of each active movement (elbow flexion, pronation, and supination; and wrist flexion, extension, radial deviation and ulnar deviation) were executed starting from the neutral position until the ROM end-feel; that is, until ROM reached its maximum due to be stopped by the anatomy. The coefficient of determination (r2) and the Intraclass Correlation Coefficient (ICC) were calculated to assess the intra-rater and inter-rater reliability. The Standard Error of the Measurement and the Minimum Detectable Change and a Bland–Altman plots were also calculated. Results Similar ROM values when measured with both instruments were obtained for the elbow (maximum difference of 3° for all the movements) and wrist (maximum difference of 1° for all the movements). These values were within the normal range when compared to literature studies. The concurrent validity analysis for all the movements yielded ICC values ≥0.78 for the elbow and ≥0.95 for the wrist. Concerning reliability, the ICC values denoted a high reliability of inertial sensors for all the different movements. In the case of the elbow, intra-rater and inter-rater reliability ICC values range from 0.83 to 0.96 and from 0.94 to 0.97, respectively. Intra-rater analysis of the wrist yielded ICC values between 0.81 and 0.93, while the ICC values for the inter-rater analysis range from 0.93 to 0.99. Conclusions Inertial sensors are a valid and reliable tool for measuring elbow and wrist active ROM. Particularly noteworthy is their high inter-rater reliability, often questioned in measurement tools. The lowest reliability is observed in elbow prono-supination, probably due to skin artifacts. Based on these results and their advantages, inertial sensors can be considered a valid assessment tool for wrist and elbow ROM.

Funder

Ministry of Science, Innovation and Universities of Spain

European Regional Development Fund of the European Commission

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference42 articles.

1. Reviews on various inertial measurement unit (IMU) sensor applications;Ahmad;International Journal of Signal Processing Systems,2013

2. A power comparison of various normality tests;Ahmad;Pakistan Journal of Statistics and Operation Research,2015

3. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors;Bai;IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015

4. Smartphone and universal goniometer for measurement of elbow joint motions: a comparative study;Behnoush;Asian Journal of Sports Medicine,2016

5. Estimation of human arm joints using two wireless sensors in robotic rehabilitation tasks;Bertomeu-Motos;Sensors,2015

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3