Air quality improvement during triple-lockdown in the coastal city of Kannur, Kerala to combat Covid-19 transmission

Author:

Resmi C.T.1ORCID,Nishanth T.2,Satheesh Kumar M.K.3,Manoj M.G.4,Balachandramohan M.1ORCID,Valsaraj K.T.5ORCID

Affiliation:

1. Department of Physics, Erode Arts and Science College, Erode, Tamil Nadu, India

2. Department of Physics, Sree Krishna College Guruvayur, Thrissur, Kerala, India

3. Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India

4. Advanced Centre for Atmospheric Radar Research, Cochin University of Science and Technology, Cochin, Kerala, India

5. Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

Abstract

The novel SARS-CoV-2 coronavirus that emerged in the city of Wuhan, China, last year has since become the COVID-19 pandemic across all continents. To restrict the spread of the virus pandemic, the Government of India imposed a lockdown from 25 March 2020. In India, Kannur district was identified as the first “hotspot” of virus transmission and a “triple-lockdown” was implemented for a span of twenty days from 20 April 2020. This article highlights the variations of surface O3, NO, NO2, CO, SO2, NH3, VOC’s, PM10, PM2.5 and meteorological parameters at the time of pre-lockdown, lockdown and triple-lockdown days at Kannur town in south India using ground-based analyzers. From pre-lockdown days to triple-lockdown days, surface O3 concentration was found to increase by 22% in this VOC limited environment. NO and NO2 concentrations were decreased by 61% and 71% respectively. The concentration of PM10 and PM2.5 were observed to decline significantly by 61% and 53% respectively. Reduction in PM10 during lockdown and triple-lockdown days enhanced the intensity of solar radiation reaching the lower troposphere, and increased air temperature and reduced the relative humidity. Owing to this, surface O3 production over Kannur was found to have increased during triple-lockdown days. The concentration of CO (67%), VOCs (61%), SO2 (62%) and NH3 (16%) were found to decrease significantly from pre-lockdown days to triple-lockdown days. The air quality index revealed that the air quality at the observational site was clean during the lockdown.

Funder

ISRO-GBP

Kerala State Council for Science Technology and Environment

Louisiana State University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3