A note on the effects of epidemic forecasts on epidemic dynamics

Author:

Record Nicholas R.1,Pershing Andrew2ORCID

Affiliation:

1. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA

2. Gulf of Maine Research Institute, Portland, ME, USA

Abstract

The purpose of a forecast, in making an estimate about the future, is to give people information to act on. In the case of a coupled human system, a change in human behavior caused by the forecast can alter the course of events that were the subject of the forecast. In this context, the forecast is an integral part of the coupled human system, with two-way feedback between forecast output and human behavior. However, forecasting programs generally do not examine how the forecast might affect the system in question. This study examines how such a coupled system works using a model of viral infection—the susceptible-infected-removed (SIR) model—when the model is used in a forecasting context. Human behavior is modified by making the contact rate responsive to other dynamics, including forecasts, of the SIR system. This modification creates two-way feedback between the forecast and the infection dynamics. Results show that a faster rate of response by a population to system dynamics or forecasts leads to a significant decline in peak infections. Responding to a forecast leads to a lower infection peak than responding to current infection levels. Inaccurate forecasts can lead to either higher or lower peak infections depending on whether the forecast under-or over-estimates the peak. The direction of inaccuracy in a forecast determines whether the outcome is better or worse for the population. While work is still needed to constrain model functional forms, forecast feedback can be an important component of epidemic dynamics that should be considered in response planning.

Funder

Bigelow Laboratory for Ocean Sciences and Gulf of Maine Research Institute

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference27 articles.

1. Special report: the simulations driving the world’s response to Covid-19;Adam;Nature,2020

2. Population biology of infectious diseases: part I;Anderson;Nature,1979

3. Estimation of the final size of the Covid-19 epidemic;Batista;medRxiv,2020

4. Global stability of an sir epidemic model with time delays;Beretta;Journal of Mathematical Biology,1995

5. Space-time dependence of corona virus (Covid-19) outbreak;Biswas,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3