Lake water volume fluctuations in response to climate change in Xinjiang, China from 2002 to 2018

Author:

Wufu Adilai1,Wang Hongwei1,Chen Yun2,Rusuli Yusufujiang3,Ma Ligang12,Yang Shengtian14,Zhang Fei1,Wang Dan1,Li Qian1,Li Yinbo1

Affiliation:

1. College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang Uygur Autonomous Region, PR China

2. CSIRO Land and Water, Canberra, Australia

3. Institute of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, Xinjiang Uygur Autonomous Region, PR China

4. College of Water Sciences, Beijing Normal University, Beijing, PR China

Abstract

Climate change has a global impact on the water cycle and its spatial patterns, and these impacts are more pronounced in eco-fragile regions. Arid regions are significantly affected by human activities like farming, and climate change, which influences lake water volumes, especially in different latitudes. This study integrates radar altimetry data from 2002 to 2018 with optical remote sensing images to analyze changes in the lake areas, levels, and volumes at different altitudes in Xinjiang, China. We analyzed changes in lake volumes in March, June, and October and studied their causes. The results showed large changes in the surface areas, levels, and volumes of lakes at different altitudes. During 2002–2010, the lakes in low- and medium-altitude areas were shrinking but lakes in high altitude areas were expanding. Monthly analysis revealed more diversified results: the lake water levels and volumes tended to decrease in March (−0.10 m/year, 37.55×108 m3) and increase in June (0.03 m/year, 3.48×108 m3) and October (0.04 m/year, 26.90×108 m3). The time series lake water volume data was reconstructed for 2011 to 2018 based on the empirical model and the total lake water volume showed a slightly increasing trend during this period (71.35×108 m3). We hypothesized that changes in lake water at high altitudes were influenced by temperature-induced glacial snow melt and lake water in low- to medium-altitude areas was most influenced by human activities like agricultural irrigation practices.

Funder

National Natural Science Foundation of China

The Group Oversea Study Program of Xinjiang, China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3