Disentangling direct and indirect effects of local temperature on abundance of mountain birds and implications for understanding global change impacts

Author:

Ceresa Francesco1,Kranebitter Petra1,S. Monrós Juan2ORCID,Rizzolli Franco1,Brambilla Mattia345ORCID

Affiliation:

1. Museum of Nature South Tyrol, Bolzano, BZ, Italia

2. Universidad de Valencia, Valencia, Spain

3. Museo delle Scienze, Trento, Italia

4. Fondazione Lombardia per l’Ambiente, Milano, Italia

5. Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italia

Abstract

Unravelling the environmental factors driving species distribution and abundance is crucial in ecology and conservation. Both climatic and land cover factors are often used to describe species distribution/abundance, but their interrelations have been scarcely investigated. Climatic factors may indeed affect species both directly and indirectly, e.g., by influencing vegetation structure and composition. We aimed to disentangle the direct and indirect effects (via vegetation) of local temperature on bird abundance across a wide elevational gradient in the European Alps, ranging from montane forests to high-elevation open areas. In 2018, we surveyed birds by using point counts and collected fine-scale land cover and temperature data from 109 sampling points. We used structural equation modelling to estimate direct and indirect effects of local climate on bird abundance. We obtained a sufficient sample for 15 species, characterized by a broad variety of ecological requirements. For all species we found a significant indirect effect of local temperatures via vegetation on bird abundance. Direct effects of temperature were less common and were observed in seven woodland/shrubland species, including only mountain generalists; in these cases, local temperatures showed a positive effect, suggesting that on average our study area is likely colder than the thermal optimum of those species. The generalized occurrence of indirect temperature effects within our species set demonstrates the importance of considering both climate and land cover changes to obtain more reliable predictions of future species distribution/abundance. In fact, many species may be largely tracking suitable habitat rather than thermal niches, especially among homeotherm organisms like birds.

Funder

Research fund of the Museums of South Tyrol

CUP

Department of Innovation, Research and University of the Autonomous Province of Bozen/Bolzano

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3