Marine soundscape and fish biophony of a Mediterranean marine protected area

Author:

La Manna Gabriella123,Picciulin Marta4ORCID,Crobu Alessia3,Perretti Francesco1,Ronchetti Fabio1,Manghi Michele15,Ruiu Alberto3,Ceccherelli Giulia2ORCID

Affiliation:

1. Environmental Research and Conservation, MareTerra Onlus, Alghero, Italy

2. Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy

3. Area Marina Protetta Capo Caccia-Isola Piana, Alghero, Italy

4. Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy

5. Nauta rcs, Milano, Italy

Abstract

Background Marine soundscape is the aggregation of sound sources known as geophony, biophony, and anthrophony. The soundscape analysis, in terms of collection and analysis of acoustic signals, has been proposed as a tool to evaluate the specific features of ecological assemblages and to estimate their acoustic variability over space and time. This study aimed to characterise the Capo Caccia-Isola Piana Marine Protected Area (Italy, Western Mediterranean Sea) soundscape over short temporal (few days) and spatial scales (few km) and to quantify the main anthropogenic and biological components, with a focus on fish biophonies. Methods Within the MPA, three sites were chosen each in a different protection zone (A for the integral protection, B as the partial protection, and C as the general protection). In each site, two underwater autonomous acoustic recorders were deployed in July 2020 at a depth of about 10 m on rocky bottoms. To characterise the contribution of both biophonies and anthrophonies, sea ambient noise (SAN) levels were measured as sound pressure level (SPL dB re: 1 μ Pa-rms) at eight 1/3 octave bands, centred from 125 Hz to 16 kHz, and biological and anthropogenic sounds were noted. Fish sounds were classified and counted following a catalogue of known fish sounds from the Mediterranean Sea based on the acoustic characteristic of sound types. A contemporary fish visual census had been carried out at the test sites. Results SPL were different by site, time (day vs. night), and hour. SPLs bands centred at 125, 250, and 500 Hz were significantly higher in the daytime, due to the high number of boats per minute whose noise dominated the soundscapes. The loudest man-made noise was found in the A zone, followed by the B and the C zone, confirming that MPA current regulations do not provide protection from acoustic pollution. The dominant biological components of the MPA soundscape were the impulsive sounds generated by some invertebrates, snapping shrimps and fish. The vast majority of fish sounds were recorded at the MPA site characterized by the highest sound richness, abundance, and Shannon-Wiener index, coherently with the results of a fish visual census. Moreover, the acoustic monitoring detected a sound associated with a cryptic species (Ophidion spp.) never reported in the study area before, further demonstrating the usefulness of passive acoustic monitoring as a complementary technique to species census. This study provides baseline data to detect future changes of the marine soundscapes and some suggestions to reduce the impact of noise on marine biodiversity.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference98 articles.

1. Diversity of sound production in fish;Amorim,2006

2. Listening forward: approaching marine bioiversity assessments uscing acoustic methods;Aran Mooney;Royal Society Open Science,2020

3. The acoustics of snapping shrimps;Au;The Journal of the Acoustical Society of America,1997

4. Sound production by dusky grouper Epinephelus marginatus at spawning aggregation sites;Bertucci;Journal of Fish Biology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3