Mandible histology in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland

Author:

Gruntmejer Kamil1,Bodzioch Adam12,Konietzko-Meier Dorota3

Affiliation:

1. European Centre of Palaeontology, University of Opole, Opole, Poland

2. Institute of Biology, Laboratory of Palaeobiology, University of Opole, Opole, Poland

3. Institute of Geosciences, Division of Paleontology, University of Bonn, Bonn, Germany

Abstract

Recent studies that have systematically augmented our knowledge of dermal bones of the Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis have mostly focused on shoulder girdle elements and the skull. So far, histological data on the mandible are still scant. For the present study, two mandibles have been examined, using 50 standard thin sections. Dermal bones of the mandible reveal a uniform diploë structure, with the external cortex consisting of moderately vascularised, parallel-fibred bone, as well as a distinct alternation of thick zones and thinner annuli. Dense bundles of well-mineralised Sharpey’s fibres are seen in the external cortex over the entire length of the mandible. The trabecular middle region is highly porous and well vascularised, showing small primary vascular canals and more numerous secondary osteons; irregular erosion spaces occur in large numbers as well. The thin and poorly vascular internal cortex consists of parallel-fibred bone. The articular is not a dermal bone in origin, having been formed of a thin layer of avascular cortex and a very extensive, trabecular middle region. In contrast to the dermal bones of the mandible, the articular developed from a cartilaginous precursor, as evidenced by numerous remains of calcified cartilage in the central parts of the bone. Histological variability is extremely high along the mandible, its anterior part being characterised by high compactness and biomechanically good resistance in contrast to the highly porous posterior parts. Distinct variations of bone thickness and degree of bone porosity in specific areas of the mandible, may be due to local differences in biomechanics during feeding. The microstructure of the mandible corroborates a previous study of the active and ambush predation strategy in metoposaurids.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3