In silico evaluation of molecular virus–virus interactions taking place between Cotton leaf curl Kokhran virus- Burewala strain and Tomato leaf curl New Delhi virus

Author:

Ali Nida Fatima1,Paracha Rehan Zafar2,Tahir Muhammad1

Affiliation:

1. Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Federal, Pakistan

2. Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology, Islamabad, Federal, Pakistan

Abstract

Background Cotton leaf curl disease (CLCuD) is a disease of cotton caused by begomoviruses, leading to a drastic loss in the annual yield of the crop. Pakistan has suffered two epidemics of this disease leading to the loss of billions in annual exports. The speculation that a third epidemic of CLCuD may result as consequence of the frequent occurrence of Tomato leaf curl New Delhi virus (ToLCNDV) and Cotton leaf curl Kokhran Virus-Burewala Strain (CLCuKoV-Bu) in CLCuD infected samples, demand that the interactions taking between the two viruses be properly evaluated. This study is designed to assess virus-virus interactions at the molecular level and determine the type of co-infection taking place. Methods Based on the amino acid sequences of the gene products of both CLCuKoV-Bu and ToLCNDV, protein structures were generated using different software, i.e., MODELLER, I-TASSER, QUARKS, LOMETS and RAPTORX. A consensus model for each protein was selected after model quality assessment using ERRAT, QMEANDisCo, PROCHECK Z-Score and Ramachandran plot analysis. The active and passive residues in the protein structures were identified using the CPORT server. Protein–Protein Docking was done using the HADDOCK webserver, and 169 Protein–Protein Interaction (PPIs) were performed between the proteins of the two viruses. The docked complexes were submitted to the PRODIGY server to identify the interacting residues between the complexes. The strongest interactions were determined based on the HADDOCK Score, Desolvation energy, Van der Waals Energy, Restraint Violation Energy, Electrostatic Energy, Buried Surface Area and Restraint Violation Energy, Binding Affinity and Dissociation constant (Kd). A total of 50 ns Molecular Dynamic simulations were performed on complexes that exhibited the strongest affinity in order to validate the stability of the complexes, and to remove any steric hindrances that may exist within the structures. Results Our results indicate significant interactions taking place between the proteins of the two viruses. Out of all the interactions, the strongest were observed between the Replication Initiation protein (Rep) of CLCuKoV-Bu with the Movement protein (MP), Nuclear Shuttle Protein (NSP) of ToLCNDV (DNA-B), while the weakest were seen between the Replication Enhancer protein (REn) of CLCuKoV-Bu with the REn protein of ToLCNDV. The residues identified to be taking a part in interaction belonged to domains having a pivotal role in the viral life cycle and pathogenicity. It maybe deduced that the two viruses exhibit antagonistic behavior towards each other, and the type of infection may be categorised as a type of Super Infection Exclusion (SIE) or homologous interference. However, further experimentation, in the form of transient expression analysis, is needed to confirm the nature of these interactions and increase our understanding of the direct interactions taking place between two viruses.

Funder

Atta-ur-Rahman School of Applied Biosciences

National University of Sciences and Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3