Consequences of life history switch point plasticity for juvenile morphology and locomotion in theTúngara frog

Author:

Charbonnier Julie F.1,Vonesh James R.1

Affiliation:

1. Department of Biology, Virginia Commonwealth University, Richmond, VA, USA

Abstract

Many animals with complex life cycles can cope with environmental uncertainty by altering the timing of life history switch points through plasticity. Pond hydroperiod has important consequences for the fitness of aquatic organisms and many taxa alter the timing of life history switch points in response to habitat desiccation. For example, larval amphibians can metamorphose early to escape drying ponds. Such plasticity may induce variation in size and morphology of juveniles which can result in carry-over effects on jumping performance. To investigate the carry-over effects of metamorphic plasticity to pond drying, we studied the Túngara frog,Physalaemus pustulosus, a tropical anuran that breeds in highly ephemeral habitats. We conducted an outdoor field mesocosm experiment in which we manipulated water depth and desiccation and measured time and size at metamorphosis, tibiofibula length and jumping performance. We also conducted a complimentary laboratory experiment in which we manipulated resources, water depth and desiccation. In the field experiment, metamorphs from dry-down treatments emerged earlier, but at a similar size to metamorphs from constant depth treatments. In the laboratory experiment, metamorphs from the low depth and dry-down treatments emerged earlier and smaller. In both experiments, frogs from dry-down treatments had relatively shorter legs, which negatively impacted their absolute jumping performance. In contrast, reductions in resources delayed and reduced size at metamorphosis, but had no negative effect on jumping performance. To place these results in a broader context, we review past studies on carry-over effects of the larval environment on jumping performance. Reductions in mass and limb length generally resulted in lower jumping performance across juvenile anurans tested to date. Understanding the consequences of plasticity on size, morphology and performance can elucidate the linkages between life stages.

Funder

National Science Foundation

NSF GRFP

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3