Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree

Author:

Fofanova Elizaveta1,Mayorova Tatiana D.12,Voronezhskaya Elena E.1

Affiliation:

1. Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia

2. Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA

Abstract

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.

Funder

Russian Foundation for Basic Research grant

Russian Science Foundation grant

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3