The stability of soil organic carbon across topographies in a tropical rainforest

Author:

Jiang Yamin1,Yang Huai23,Yang Qiu1,Liu Wenjie14,Li Zhaolei4,Mao Wei1,Wang Xu1,Tan Zhenghong1

Affiliation:

1. Hainan University, College of Ecology and Environment, Haikou, China

2. International Center for Bamboo and Rattan, BeiJing, China

3. Chinese Academy of Forestry, Jianfengling National Key Field Research Station for Tropical Forest Ecosystem, Research Institute of Tropical Forestry, Hainan, China

4. Northern Arizona University, Center for Ecosystem Science and Society, Flagstaff, AZ, USA

Abstract

Mechanisms of soil organic carbon (SOC) stability are still unclear in forest ecosystems. In order to unveil the influences of topography on the SOC stability, a 60ha dynamic plot of a tropical montane rainforest was selected in Jianfengling, in Hainan Island, China and soil was sampled from 60 quadrats. The chemical fractions of the SOC were detected with 13C CPMAS/NMR and path analyses explore the mechanisms of SOC stability in different topographies. The chemical fractions of the SOC comprised alkyl carbon > O-alkyl carbon > carboxyl carbon > aromatic carbon. The decomposition index (DI) values were greater than 1 in the different topographies, with an average DI value was 1.29, which indicated that the SOC in the study area was stable. Flat and top areas (together named RF) had more favorable nutrients and silt contents compared with steep and slight steep areas (together named RS). The influencing factors of SOC stability varied across the topographies, where SOC, soil moisture (SM) and ammoniacal nitrogen (NH4+-N, AN) were the main influencing factors in the RF, while SM and AN were the main factors in the RS. Greater SOC and AN strengthened the SOC stability, while higher soil moisture lowered SOC stability. The inertia index was higher in the RS than the RF areas, indicating that local topography significantly affects SOC content and SOC stability by changing soil environmental factors. Topography cannot be neglected in considering SOC stability and future C budgets.

Funder

The Natural Science Foundation of Hainan province

The National Key R&D Program of China

The National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3