Ciprofloxacin reduces tenocyte viability and proteoglycan synthesis in short-term explant cultures of equine tendon

Author:

James Stuart1,Schuijers Johannes1,Daffy John2,Cook Jill3,Samiric Tom1

Affiliation:

1. Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia

2. Department of Infectious Diseases, St. Vincent’s Hospital, Melbourne, Victoria, Australia

3. Sports and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia

Abstract

Fluoroquinolones are an effective, broad-spectrum antibiotic used to treat an array of bacterial infections. However, they are associated with an increased risk of tendinopathy and tendon rupture even after discontinuation of treatment. This condition is known as fluoroquinolone-associated tendinopathy, the underlying mechanisms of which are poorly understood. While many factors may be involved in the pathophysiology of tendinopathies in general, changes in tenocyte metabolism and viability, as well as alteration of proteoglycan metabolism are prominent findings in the scientific literature. This study investigated the effects of ciprofloxacin, a common fluoroquinolone, on cell viability, proteoglycan synthesis, and proteoglycan mRNA expression in equine superficial digital flexor tendon explants after 96 h treatment with between 1–300 µg/mL ciprofloxacin, and again after 8 days discontinuation of treatment. Ciprofloxacin caused significant reductions in cell viability by between 25–33% at all dosages except 10 µg/mL, and viability decreased further after 8 days discontinuation of treatment. Proteoglycan synthesis significantly decreased by approximately 50% in explants treated with 100 µg/mL and 300 µg/mL, however this effect reversed after 8 days in the absence of treatment. No significant mRNA expression changes were observed after the treatment period with the exception of versican which was down-regulated at the highest concentration of ciprofloxacin. After the recovery period, aggrecan, biglycan and versican genes were all significantly downregulated in explants initially treated with 1–100 µg/mL. Results from this study corroborate previously reported findings of reduced cell viability and proteoglycan synthesis in a whole tissue explant model and provide further insight into the mechanisms underlying fluoroquinolone-associated tendinopathy and rupture. This study further demonstrates that certain ciprofloxacin induced cellular changes are not rapidly reversed upon cessation of treatment which is a novel finding in the literature.

Funder

La Trobe APA/RTP Post Graduate Research Scholarship

La Trobe University, Melbourne, Australia

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3