Affiliation:
1. Division of Science and Kinesiology, Cornerstone University, Grand Rapids, MI, United States of America
Abstract
The abundance of arthropods is declining globally, and human-modification of natural habitat is a primary driver of these declines. Arthropod declines are concerning because arthropods mediate critical ecosystem functions, and sustained declines may lead to cascading trophic effects. There is growing evidence that properly managed urban environments can provide refugium to arthropods, but few cities have examined arthropods within urban greenspaces to evaluate their management efforts. In this study, we surveyed arthropod communities within a medium-sized, growing city. We investigated arthropod communities (abundance, richness, diversity, community composition) within 16 urban greenspaces across metropolitan Grand Rapids, Michigan (USA). We focused our efforts on urban gardens and pocket prairies, and measured environmental variables at each site. We collected 5,468 individual arthropods that spanned 14 taxonomic orders and 66 morphospecies. The results showed that community composition was influenced by impervious surface, white flower abundance, and humidity. Total arthropod abundance and diversity were positively associated with humidity. For specific orders, Hymenoptera (bees, ants, wasps) abundance was negatively associated with temperature, and positively associated with site perimeter-area ratio. Hemiptera (true bugs) were negatively associated with impervious surface and positively associated with humidity. These findings show that impervious surfaces impact arthropod communities, but many of the observed changes were driven by local abiotic conditions like temperature and humidity. This suggests that management decisions within urban greenspaces are important in determining the structure of arthropod communities. Future studies on arthropods in cities should determine whether manipulating the abiotic conditions of urban greenspaces influences the composition of arthropod communities. These results should inform city planners and homeowners of the need to properly manage urban greenspaces in cities to maintain diverse arthropod assemblages.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience