Adam21 is dispensable for reproductive processes in mice

Author:

Chen Yinghong12,Liu Chao13,Shang Yongliang4,Wang Liying12,Li Wei123,Li Guoping5

Affiliation:

1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China

4. Advanced Medical Research Institute, Shandong University, Jinan, China

5. The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China

Abstract

Background As a group of membrane-anchored proteins, the proteins containing a disintegrin and metalloprotease domain (ADAMs) control many biological processes, especially for male fertility. Mouse Adam21 was previously found to be specifically expressed in the somatic cells and germ cells of testes, but its functional role during spermatogenesis and male reproductive processes is still unknown. Methods Adam21-null mice were created using the CRISPR/Cas9 system. Quantitative real-time PCR was used for analyzing of gene expression. Histological, cytological and immunofluorescence staining were performed to analyze the phenotypes of mouse testis and epididymis. Intracellular lipid droplets (LDs) were detected by Oil red O (ORO) staining and BODIPY staining. Fertility and sperm characteristics were also detected. Results Here, we successfully generated an Adam21 conventional knockout mouse model via CRISPR/Cas9 technology so that we can explore its potential role in male reproduction. We found that male mice lacking Adam21 have normal fertility without any detectable defects in spermatogenesis or sperm motility. Histological analysis of the seminiferous epithelium showed no obvious spermatogenesis difference between Adam21-null and wild-type mice. Cytological analysis revealed no detectable defects in meiotic progression, neither Sertoli cells nor Leydig cells displayed any defect compared with that of the control mice. All these results suggest that Adam21 might not be essential for male fertility in mice, and its potential function still needs further investigation.

Funder

National Key R&D Program of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3