Transcriptome analysis reveals the potential biological function of FSCN1 in HeLa cervical cancer cells

Author:

Guo Fengqin1,Liu Yanliang2,Cheng Yanxiang1,Zhang Qifan1,Quan Weili3,Wei Yaxun4,Hong Li1

Affiliation:

1. Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China

2. Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China

3. ABLife BioBigData Institute, Wuhan, Hubei Province, China

4. Center for Genome Analysis, ABLife Inc., Wuhan, Hubei Province, China

Abstract

Fascin actin-bundling protein 1 (FSCN1), an actin-bundling protein associated with cell migration and invasion, is highly expressed in various tumor tissues. FSCN1 has also been reported to be a marker of increased invasive potential in cervical cancers. However, the functions of FSCN1 are still not fully understood in cervical cancers. Here, the gene expression profile of HeLa cells transfected with FSCN1 shRNA (shFSCN1) was compared with that of cells transfected with empty vector (shCtrl). The results showed that shFSCN1 extensively affected the transcription level of 5,043 genes in HeLa cells. In particular, Gene Ontology (GO) analysis showed that a large number of upregulated genes were annotated with terms including transcription regulation and DNA binding. The downregulated genes were enriched in some cancer pathways, including angiogenesis and cell adhesion. qPCR validation confirmed that FSCN1 knockdown significantly affected the expression of selected genes in HeLa cells either negatively or positively. Expression analysis in TCGA (The Cancer Genome Atlas) revealed that FSCN1 had negative correlations with several transcription factors and a positive correlation with an angiogenic factor (angiopoietin like 4, ANGPTL4) in cervical tumor tissue. In particular, validation by Western blotting showed that FSCN1 knockdown decreased the protein level of ANGPTL4. Our results demonstrated that FSCN1 is not only an actin-binding protein but also a transcriptional regulator and an angiogenic factor in cervical cancer. Thus, our study provides important insights for further study on the regulatory mechanism of FSCN1 in cervical cancer.

Funder

Fundamental Research Funds for the Central Universities

ABLife

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3