In silico identification, characterization expression profile of WUSCHEL-Related Homeobox (WOX) gene family in two species of kiwifruit

Author:

Feng Chen1,Zou Shuaiyu1,Gao Puxin1,Wang Zupeng233

Affiliation:

1. Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China

2. Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China

3. Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China

Abstract

The WUSCHEL (WUS)-related homeobox (WOX) gene family is a class of plant-specific transcriptional factors and plays a crucial role in forming the shoot apical meristem and embryonic development, stem cell maintenance, and various other developmental processes. However, systematic identification and characterization of the kiwifruit WOX gene family have not been studied. This study identified 17 and 10 WOX genes in A. chinensis (Ac) and A. eriantha (Ae) genomes, respectively. Phylogenetic analysis classified kiwifruit WOX genes from two species into three clades. Analysis of phylogenetics, synteny patterns, and selection pressure inferred that WOX gene families in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in WOX gene number and distribution. Ten conserved motifs were identified in the kiwifruit WOX genes, and motif architectures of WOXs belonging to different clades highly diverged. The cis-element analysis and expression profiles investigation indicated the functional differentiation of WOX genes and identified the potential WOXs in response to stresses. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit WOXs.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3