Recommended nitrogen rates and the verification of effects based on leaf SPAD readings of rice

Author:

Hou Wenfeng1,Shen Juan1,Xu Weitao1,Khan Muhammad Rizwan2,Wang Yin1,Zhou Xue1,Gao Qiang1,Murtaza Behzad3,Zhang Zhongqing1

Affiliation:

1. Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases/College of Resources and Environmental Science, Jilin Agricultural University, Changchun, Jilin, Changchun, China

2. Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan

3. Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan

Abstract

Modern rice production systems need a reliable, easy-to-use, efficient, and environmentally-friendly method to determine plant nitrogen (N) status , predict grain yield, and optimize N management. We conducted field experiments to determine the influence of different N rates on Soil Plant Analysis Development (SPAD) readings of rice leaves. We also performed field validations to evaluate the grain yield and N use efficiency under recommended N rates. Our results showed that leaf SPAD readings increased as N rates increased. We applied the recommended N based on the relationships between the N rates and leaf SPAD readings at the tillering and booting stages. The recommended N decreased N rates and improved N use efficiency without sacrificing grain yield. When compared to farmer practices (FP), the recommended N rates of optimization (OPT) decreased by 5.8% and 10.0%, respectively. In comparison with FP, the N agronomic efficiency of OPT increased by 5.8 and 10.0% while the partial factor productivity of N increased by 6.0 and 14.2%, respectively. The SPAD meter may be a reliable tool to analyze the N in rice, estimate real-time N fertilization, and improve N use efficiency.

Funder

Scientific Research Start-up Fund of Jilin Agricultural University

National Key Research and Development Program of China

Science and Technology Project of the 13th Five-Year Plan of Jilin Provincial Department of Education

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3