Identification and validation of hub genes for diabetic retinopathy

Author:

Peng Li12,Ma Wei1,Xie Qing2,Chen Baihua1

Affiliation:

1. Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China

2. Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China

Abstract

Background Diabetic retinopathy (DR) is characterized by a gradually progressive alteration in the retinal microvasculature that leads to middle-aged adult acquired persistent blindness. Limited research has been conducted on DR pathogenesis at the gene level. Thus, we aimed to reveal novel key genes that might be associated with DR formation via a bioinformatics analysis. Methods The GSE53257 dataset from the Gene Expression Omnibus was downloaded for gene co-expression analysis. We identified significant gene modules via the Weighted Gene Co-expression Network Analysis, which was conducted by the Protein-Protein Interaction (PPI) Network via Cytoscape and from this we screened for key genes and gene sets for particular functional and pathway-specific enrichments. The hub gene expression was verified by real-time PCR in DR rats modeling and an external database. Results Two significant gene modules were identified. Significant key genes were predominantly associated with mitochondrial function, fatty acid oxidation and oxidative stress. Among all key genes analyzed, six up-regulated genes (i.e., SLC25A33, NDUFS1, MRPS23, CYB5R1, MECR, and MRPL15) were highly and significantly relevant in the context of DR formation. The PCR results showed that SLC25A33 and NDUFS1 expression were increased in DR rats modeling group. Conclusion Gene co-expression network analysis highlights the importance of mitochondria and oxidative stress in the pathophysiology of DR. DR co-expressing gene module was constructed and key genes were identified, and both SLC25A33 and NDUFS1 may serve as potential biomarker and therapeutic target for DR.

Funder

National Natural Science Foundation of China

Key R & D Program of Hainan Province in 2018

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3