Carbon isotope discrimination and the factors affecting it in a summer maize field under different tillage systems

Author:

Cui Jichao,Han Huifang

Abstract

Based on two years of field experiments, under different soil tillage methods and straw management practices, which included conventional tillage (CT), subsoiling (SS), rotary tillage (RT), and no-tillage (NT), combined with either straw return (S) or straw removal (0), we characterized the dynamic changes in Δ13C among three height layers [upper (U, 240 cm above the ground), middle (M, 120 cm above the ground), and lower (L, 30 cm above the ground)] of the summer maize canopy. The Δ13C, the factors affecting it, and the relationships between Δ13C and soil water content (SWC), the leaf area index (LAI), canopy microclimate, and the CO2 concentration were elucidated. The results indicated that the Δ13C of summer maize at the pre-filling stage was greater than that at the post-filling stage. Δ13C also varied at different heights, with the order of the Δ13C values being L > U > M. Among the different tillage methods, the Δ13C values were ordered SSS > CTS > RTS > NTS. SSS and NTS significantly increased the LAI; air temperature and relative humidity tended to gradually decrease with the increase in height of summer maize. Correlation analyses of the various influencing factors and Δ13C showed that SWC, LAI, air temperature, and CO2 concentration were all positively correlated with Δ13C, in which LAI and air temperature were significantly or extremely significantly positively correlated with Δ13C. In addition, we show that Δ13C can be used as a prediction index for summer maize yield, providing a theoretical basis for future yield research that may save precious time in summer maize breeding efforts.

Funder

National Nature Science Foundation of China

Public Interest of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3