Assessment of the effects of storage temperature on fatty acid analysis using dried blood spot cards from managed southern white rhinoceroses (Ceratotherium simum simum): implications for field collection and nutritional care

Author:

Wood Jordan1,Minter Larry J.2,Bibus Doug3,Tollefson Troy N.4,Ange-van Heugten Kimberly1

Affiliation:

1. Animal Science, North Carolina State University, Raleigh, North Carolina, United States

2. North Carolina Zoo, Asheboro, North Carolina, United States

3. Lipid Technologies LLC, Austin, Minnesota, United States

4. Mazuri® Exotic Animal Nutrition, PMI Nutrition, Land O’ Lakes, Inc., St. Louis, Missouri, United States

Abstract

Background Southern white rhinoceroses (Ceratotherium simum simum) are an endangered species in decline due to poaching and negative habitat changes. Conservation of the species has become increasingly important and a focus on better human management has become prevalent. One area of management that impacts southern white rhinoceroses is nutritional health monitoring, which is often conducted through blood analysis. Blood analysis conducted during field research can be difficult due to temperature, distance, and limited technological resources, so new methods of fast, and relatively stable blood collection are being pursued. One method that has been used in humans for many years is beginning to make its way into wildlife studies: the use of dried blood spot (DBS) cards. These cards are used as a tool to store single drops of whole blood on specialized filter paper and, once dried, can be used for nutritional biomarker analysis. An area of interest for southern white rhinoceroses and nutrition is monitoring fatty acid percentages for cardiovascular, immune, and reproductive health. The time and temperature limitations for storing blood fractions or liquid whole blood when analyzing fatty acids have been investigated, but few studies have performed storage studies on DBS cards colder than −20 °C or in non-human species. Methods In order to better understand the limitations of DBS cards and the impact of temperature on fatty acid DBS samples in long-term storage, triplicate samples from seven adult southern white rhinoceroses at the North Carolina Zoo were collected and subjected to three storage treatments (immediate, room temperature (23 °C), or frozen (−80 °C) for 1 year). Results Stearidonic (18:4w3) (Δ 0.3%), arachdic (20:0) (Δ 0.1%), eicosatetraenoic (20:4w3) (Δ 0.2%), and erucic acid (22:1w9) (Δ 0.1%) were in higher concentration in frozen than initial. Fatty acids in higher concentrations in the initial samples than frozen were myristic (14:0) (Δ 0.2%), mead (20:3w9) (Δ 0.1%), docosatetraenoic (22:4w6) (Δ 0.2%), nervonic (24:1) (Δ 0.1%), and total highly unsaturated fatty acids (HUFAs) (Δ 0.7%). Stearic (18:0) (Δ 2.2%), stearidonic (18:4w3) (Δ 0.3%), arachdic (20:0) (Δ 0.2%), paullinic (20:1w7) (Δ 0.4%), eicosatetraenoic (20:4w3) (Δ 0.1%), eicosapentaenoic (20:5w3) (Δ 0.1%), docosatetraenoic (22:4w6) (Δ 0.2%), nervonic acid (24:1) (Δ 0.2%), monoenes (Δ 1.9%), and total saturates (Δ 3.6%) had higher concentrations in room temperature than initial. Linoleic (18:2w6) (Δ 4.9%), mead acid (20:3w9) (Δ 0.1%), total polyunsaturated fatty acids (5.3%), and total omega-6 fatty acids (Δ 4.8%) had higher concentrations in initial compared to room temperature. Arachidonic (20:4w6) (Δ 0.4%) and omega-3 docosapentaenoic acid (22:5w3) (Δ 0.1%), had higher concentrations in frozen than in room temperature. Discussion The frozen samples had the fewest statistical differences compared to room temperature samples and essential omega-3 and -6 fatty acids were stable with freezing up to 1 year. While more research is still warranted, current results suggest that DBS samples are best utilized when immediate analysis or −80 °C storage is available.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3