Characterizing the suckling behavior by video and 3D-accelerometry in humpback whale calves on a breeding ground

Author:

Ratsimbazafindranahaka Maevatiana N.123,Huetz Chloé2,Andrianarimisa Aristide3,Reidenberg Joy S.4,Saloma Anjara1,Adam Olivier25,Charrier Isabelle2

Affiliation:

1. Association Cétamada, Barachois Sainte Marie, Madagascar

2. Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France

3. Département de Zoologie et Biodiversité Animale, Université d’Antananarivo, Antananarivo, Madagascar

4. Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, United States of America

5. Institut Jean Le Rond d’Alembert, Sorbonne Université, Paris, France

Abstract

Getting maternal milk through nursing is vital for all newborn mammals. Despite its importance, nursing has been poorly documented in humpback whales (Megaptera novaeangliae). Nursing is difficult to observe underwater without disturbing the whales and is usually impossible to observe from a ship. We attempted to observe nursing from the calf’s perspective by placing CATS cam tags on three humpback whale calves in the Sainte Marie channel, Madagascar, Indian Ocean, during the breeding seasons. CATS cam tags are animal-borne multi-sensor tags equipped with a video camera, a hydrophone, and several auxiliary sensors (including a 3-axis accelerometer, a 3-axis magnetometer, and a depth sensor). The use of multi-sensor tags minimized potential disturbance from human presence. A total of 10.52 h of video recordings were collected with the corresponding auxiliary data. Video recordings were manually analyzed and correlated with the auxiliary data, allowing us to extract different kinematic features including the depth rate, speed, Fluke Stroke Rate (FSR), Overall Body Dynamic Acceleration (ODBA), pitch, roll, and roll rate. We found that suckling events lasted 18.8 ± 8.8 s on average (N = 34) and were performed mostly during dives. Suckling events represented 1.7% of the total observation time. During suckling, the calves were visually estimated to be at a 30–45° pitch angle relative to the midline of their mother’s body and were always observed rolling either to the right or to the left. In our auxiliary dataset, we confirmed that suckling behavior was primarily characterized by a high average absolute roll and additionally we also found that it was likely characterized by a high average FSR and a low average speed. Kinematic features were used for supervised machine learning in order to subsequently detect suckling behavior automatically. Our study is a proof of method on which future investigations can build upon. It opens new opportunities for further investigation of suckling behavior in humpback whales and the baleen whale species.

Funder

The CNRS and the Cétamada association

The IDEX Paris-Saclay

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3