Structural analysis of M1AP variants associated with severely impaired spermatogenesis causing male infertility

Author:

Gerlevik Umut12ORCID,Ergoren Mahmut Cerkez34,Sezerman Osman Uğur15,Temel Sehime Gulsun678

Affiliation:

1. Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey

2. Department of Biochemistry, University of Oxford, Oxford, United Kingdom

3. Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus

4. DESAM Institute, Near East University, Nicosia, Cyprus

5. Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey

6. Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey

7. Department of Histology & Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey

8. Department of Translational Medicine, Health Sciences Institute, Bursa Uludag University, Bursa, Turkey

Abstract

Background Impaired meiosis can result in absence of sperm in the seminal fluid. This condition, namely non-obstructive azoospermia (NOA), is one of the reasons of male infertility. Despite the low number of studies on meiosis 1-associated protein (M1AP) in the literature, M1AP is known to be crucial for spermatogenesis. Recently, seven variants (five missense, one frameshift, one splice-site) have been reported in the M1AP gene as associated with NOA, cryptozoospermia and oligozoospermia in two separate studies. However, all missense variants were evaluated as variant of uncertain significance by these studies. Therefore, we aimed to analyze their structural impacts on the M1AP protein that could lead to NOA. Methods We firstly performed an evolutionary conservation analysis for the variant positions. Afterwards, a comprehensive molecular modelling study was performed for the M1AP structure. By utilizing this model, protein dynamics were sampled for the wild-type and variants by performing molecular dynamics (MD) simulations. Results All variant positions are highly conserved, indicating that they are potentially important for function. In MD simulations, none of the variants led to a general misfolding or loss of stability in the protein structure, but they did cause severe modifications in the conformational dynamics of M1AP, particularly through changes in local interactions affecting flexibility, hinge and secondary structure. Conclusions Due to critical perturbations in protein dynamics, we propose that these variants may cause NOA by affecting important interactions regulating meiosis, particularly in wild-type M1AP deficiency since the variants are reported to be homozygous or bi-allelic in the infertile individuals. Our results provided reasonable insights about the M1AP structure and the effects of the variants to the structure and dynamics, which should be further investigated by experimental studies to validate.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3